

Detailed Site Investigation

16-21 Cusack Place, Yass, NSW

Catalyze Property Consulting Pty Ltd

5 October 2021

Author	Chris Gunton	COG
Reviewer	Kelly Lee	Contraction of Envirence
Approver	Chris Gunton	
Report Reference	P21091_DSI Cusack Place Ya	ass_20211005
Date	5/10/2021	
Revision Text	R01	

This report has been prepared for Catalyze Property Consulting Pty Ltd in accordance with the terms and conditions of appointment for Q21118 (11 August 2021). Lanterra Consulting Pty Ltd cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

REVISIONS

Revision	Date	Description	Prepared	Approved
R00	05/05/2021	Draft for Review	CG	CG
R01	07/05/2021	Final	CG	CG

Lanterra Consulting Pty Limited Unit 13/71 Leichhardt Street, Kingston ACT 2604 ABN: 30 629 182 823

Table of Contents

Executi	ve Summary4
1. Int	roduction5
1.1	Objectives5
1.2	Scope of Work5
1.3	Regulatory Guidelines / Legislations5
1.4	Limitations6
2. Sit	e Characteristics7
2.1	Site Location and Description7
2.2	Surrounding Land Uses7
2.3	Sensitive Environments
2.4	Proposed Land Use8
3. Pro	evious Investigations
4. Sit	e Condition and Environmental Setting10
4.1	Topography10
4.2	Visible Signs of Contamination10
4.3	Odours10
4.4	Fill Material10
4.5	Staining10
4.6	Vegetation10
5. Ge	ology and Hydrogeology11
5.1	Geology11
5.2	Hydrogeology11
5.3	Hydrology11
5.4	Soils and Acid Sulfate Soil Risk11
6. Pr	eliminary Conceptual Site Model12
6.1	Areas of Environmental Concern12
6.2	Contaminants of Potential Concern12
6.3	Exposure Pathways and Receptors13
7. As	sessment Criteria
7.1	Soil Assessment Criteria15
8. Da	ta Quality Objectives
9. Sa	mpling, Analysis and Quality Plan
9.1	Chronology of Events
9.2	Sampling Plan20
9.2	2.2 Quality Assurance / Quality Control

9.	3	Analytical Plan	.21
9.	4	Decontamination procedures	.21
10.	Met	hods	. 22
10	0.1	Soil Investigation	.22
11.	Qua	lity Assurance (QA) and Quality Control (QC) Plan	23
11	1.1	Field QA/QC	. 23
11	1.2	Laboratory QA/QC	. 23
12.	Resu	ults	25
12	2.1	Visual Observations / Field Measurements	.25
12	2.2	Analytical Results	.25
	TRH	, BTEX, OPP/OCP, PAH, PCB and Asbestos	. 25
	Heav	vy Metals	. 25
13.	Sum	mary and Conclusions	26
14.	Refe	erences	27
15.	Glos	sary	28

List of Tables

Table 1: Summary of Site Details	7
Table 2: Identified COPC and the associated AECs	12
Table 3: Summary of Exposure Pathways	13
Table 4: Measured Physicochemical properties	15
Table 5: Soil Assessment Criteria	16
Table 6: DQOs derived for the Investigation	
Table 7: Summary of the Chronology of Works	20
Table 8: Rationale for soil sampling locations	20
Table 9: Analytical plan for the investigation	21
Table 10: Matrix spike samples that Exceed the Laboratory QA/QC criteria	24

Appendices

Appendix A	Figures
Appendix B	Results Summary Tables
Appendix C	Laboratory Reports and Chain of Custody Documentation
Appendix D	Bore Logs
Appendix E	EIL Calculations
Appendix F	Photographs

Executive Summary

Catalyze Property Consulting Pty Ltd (Catalyze) engaged Lanterra Consulting Pty Ltd (Lanterra) to complete a detailed site investigation (DSI) for Lots 2, 3 and 4 of DP 1185025 and Lot 1 of DP 1007355, Yass, NSW (herein referred to as the site).

It is understood that there is a proposal to redevelop the site for residential purposes. A preliminary site investigation (PSI) was completed by Murrang Earth Sciences (Murrang) in June 2021 to assess potential contamination risks across the site, the results of which indicated that further investigation, including the sampling of soil would be required to assess the suitability of the site for future residential land uses.

Murrang's PSI concluded that further environmental investigation including soil sampling was recommended to examine the contamination risks identified across the site

The objective of this investigation was to assess the suitability of the site for the land uses permitted under the R5: Large Lot Residential Zone and adequately characterise the condition of the site including soil sampling from a contamination perspective.

From the results of the PSI by Murrang and the soil sampling completed as a part of this investigation are summarised below:

- The majority of the site was used for agricultural purposes. Two (2) existing residential properties are located on the site.
- Sources of potential contamination that had been identified included herbicides that may have been used as a part of pasture improvement, possible lead that may have been deposited at the surface by vehicular traffic along Wee Jasper Road.
- Soil across the site comprised of a sandy silt at the surface while a silty clay was encountered below the sandy silt.
- Based on the analytical results of soil samples, COPCs were below the adopted criteria in all soil samples analysed while no traces of anthropogenic materials were observed in soil across the site.
- A small stockpile of 3 m³ was located in the north-western section of the site. The stockpile had traces of asphalt and concrete, however concentrations of COPCs in soil were below the adopted assessment criteria. Based on the results, the soil is considered suitable to remain on the site, while the amount of concrete and asphalt is not prevent the use of the soil from an aesthetic perspective.

Based on the results of the investigation and the current setting of the site, the risk of contamination that may pose a risk to the future land uses is low. Therefore, Lanterra concludes the that the site is suitable for future residential land use.

While no contamination was identified across the site, a construction environment management plan (CEMP) which includes an unexpected finds protocol (UFP) to manage any unexpected occurrences of contamination should they be encountered is recommended.

1. Introduction

Catalyze Property Consulting Pty Ltd (Catalyze) engaged Lanterra Consulting Pty Ltd (Lanterra) to complete a detailed site investigation (DSI) for Lots 2, 3 and 4 of DP 1185025 and Lot 1 of DP 1007355, Yass, NSW (herein referred to as the site).

The site is zoned R5: Large Lot Residential under the Yass Valley Local Environmental Plan 2013 and has an estimated area of 43 hectares (ha).

It is understood that a development application for a proposed residential development would be submitted for the site and that a preliminary site investigation (PSI) was completed by Murrang Earth Sciences (Murrang) in June 2021 to assess potential contamination risks across the site.

Murrang's PSI concluded that further environmental investigation including soil sampling is recommended to examine the contamination risks identified across the site (see **Section 3**).

This DSI addresses the recommendation for further intrusive investigation across the site.

The location and layout of the site are illustrated on Figure 1 and Figure 2, Appendix A.

1.1 Objectives

The objective of this investigation is to assess the suitability of the site for the land uses permitted under the R5: Large Lot Residential Zone and adequately characterise the condition of the site including soil sampling from a contamination perspective.

1.2 Scope of Work

The scope of work for the investigation was as follows:

- A suitably qualified environmental consultant identified the sampling locations, and a Telstra Accredited Service Locator cleared each location of underground services.
- Undertake intrusive site investigation across the site including constructing eighteen (18) boreholes for soil sampling.
- Undertake soil analysis at a National Associated of Testing Authorities (NATA) accredited laboratory for the analyses of contaminants of potential concern (COPCs; **Section 6.2**).
- Assess laboratory results obtained from the investigation against the applicable land use criteria.
- Prepare a detailed investigation report presenting:
 - The results of the intrusive investigation.
 - Recommendation if further investigation / remediation is required.

1.3 Regulatory Guidelines / Legislations

The investigation and preparation of this report was undertaken with reference to (but not limited to) the following regulatory guidance documents and standards:

- National Environmental Protection Council (NEPC) (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended April 2013) (hereafter ASC NEPM 2013);
- NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd Ed.) (2017);
- NSW EPA (1995) Sampling Design Guidelines;

- NSW EPA (2020) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites; and
- Standards Australia (2005). Guide to the investigation and sampling of sites with potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds AS4482.1 (2005) and Part 2: Volatile substances, AS4482.2 (2005).

1.4 Limitations

The findings of the report are based on the Scope of Work outlined above. Lanterra has performed services in a manner consistent with the normal level of care and expertise exercised by members of the environmental assessment profession. No warranties express or implied, are made.

The assessment was limited strictly to identifying typical environmental conditions associated with the subject property area and does not include evaluation of any other issues.

The absence of any identified hazardous or toxic materials on the subject property should not be interpreted as a guarantee that such materials do not exist on the site.

The results of this assessment are based upon the site inspection specified above conducted by Lanterra personnel and information from the Client or regulatory agencies. All conclusions and recommendations regarding the property area will be the professional opinions of the Lanterra personnel involved with the project, subject to the qualifications made above.

While normal assessments of data reliability are made, Lanterra will not assume responsibility or liability for errors in any data obtained from regulatory agencies, statements from sources outside of Lanterra, or developments resulting from situations outside the scope of this project.

2. Site Characteristics

2.1 Site Location and Description

The site location and a detailed site plan are presented in Figure 1 and Figure 2, Appendix A.

Table 1: Summary of Site Details

Site Characteristics	Detail
Street Address	16-21 Cusack Place, Yass, NSW
Approximate Easting and Northing (centre of the site) (GDA2020 / MGA zone 55)	Easting: 675697 Northing: 6140444
Approximate Elevation (m AHD)	530 – 564 m
Lot and Plan Number	Lots 2, 3 and 4 of DP 1185025 and Lot 1 of DP 1007355
Land Zoning	R5: Large Lot Residential
Site Owner	Judith Hanrahan and Michael Hanrahan
Current Land Use	Agricultural (Improved Pasture and Livestock)
Site Area	430,000 square metres (m ²)

The following description is based on observations made during the site visits conducted on 1 and 2 September 2021 by a suitably qualified environmental scientist from Lanterra:

- The site is primarily vacant paddock. Rows of trees, presumably placed as a wind break are situated in the vicinity of two residential dwellings. It was noted that prior to fieldwork, heavy rain had fallen and the ground was soft and wet.
- Two residential dwellings (Karoo and Ironwood) were observed in the eastern section of the site. Both dwellings were located on topographically higher points of the site.
- Wee Jasper Road is located adjacent to the western boundary of the site.
- Access to the site is via Cusack Place located in the south-eastern section of the site. Access to the houses is via unsealed tracks from the gate a Cusack Place to each residential building.
- The metal sheeting and animal burrows that were observed by Murrang was still present in the southern section of the site.
- Shallow outcropping rock was observed across the site.
- No above-ground or underground fuel infrastructure was observed.

A detailed site plan is presented in **Figure 2**, **Appendix A** while photographs of the site are provided in **Appendix F**.

2.2 Surrounding Land Uses

A summary of the land uses that surround the site are as follows:

- North: Residential properties along Clayton Street and Lumsden Avenue are located immediately north of the site.
- **South:** Cusack Place is located in the eastern portion of the southern boundary. Adjacent to the central and western portions of the site are rural residential properties.

- **East:** Rural residential properties accessed from Craig Close are located along the eastern boundary.
- **West:** Wee Jasper Road is located along the western boundary of the site. The opposite side of Wee Jasper Road is occupied by agricultural paddocks.

2.3 Sensitive Environments

The following sensitive environment receptors were identified across the site and its surroundings:

- Residents and users of the site.
- Future workers developing the site.
- A small creek is located 300 m to the west of the site approximately. This creek is eventually discharges in Yass River, 3.5 km to the northwest.

2.4 Proposed Land Use

The Site is to be developed for a range of uses including residential dwellings. The development proposal is not presently known, but it may include plans for schools, childcare centres or recreational facilities/areas.

3. Previous Investigations

One previous investigation has been completed by Murrang Earth Sciences titled '*Preliminary Site Investigation of 16-21 Cusack Place, Yass*' which was made available for Lanterra to review. A summary of this investigation is presented below.

A rural and residential subdivision is proposed on the property located at 16 – 21 Cusack Place, Yass, NSW. The is comprised of Lots 3 and 4 of DP 1185025, owned by Michael Hanrahan, and Lot 2 of DP 1185025 and Lot 1 of DP1007355 which is owned by Judy Hanrahan.

The objective of the preliminary site investigation was to assess the potential risks to human health and the environment by contamination associated with present and prior land uses for submission with a future development application.

The National Environment Protection (Assessment of Site Contamination) Measure 1999 was used as a framework to undertake a preliminary investigation of the Site. A desktop review and site inspection found activities that may introduce contaminants of concern into the environment. These were identified as areas of environmental concern (AEC) as the following:

General Site Area: Soil affected by naturally occurring metals that may be associated with the geology of the site.

Land Adjacent to Roads: Soil that may be affected by lead from vehicular use, particularly before the introduction of unleaded fuels and residual herbicides from weed mitigation programs.

Western Paddocks: Soil affected by cadmium and possibly other heavy metals from pasture improvement activities.

A hole of unknown origin: The purpose and origin of the hole was not known, however there was concern that the contaminants may have been deposited in or around the hole.

Based on the identified AECs and their contaminants of concern, the potential impact on human health and/or the environment could be constrained.

It was therefore recommended that the sampling of soil be undertaken to assess whether the site may be suitable for the proposed development.

4. Site Condition and Environmental Setting

4.1 Topography

The digital topographic map presented on the sixmaps website (available at <u>http://www.six.nsw.gov.au/</u>) indicates the site has an elevation of approximately 540 – 560 m above Australian Height Datum (m AHD).

The general topography of the investigation site and the surrounding area is relatively flat and gently slopes from south to north.

4.2 Visible Signs of Contamination

There were no major visible indications of contamination observed during the site visit conducted on 1 September and 2 September 2021. Traces of anthropogenic materials were observed in a 3 m³ stockpile located in the northwest corner of the site.

No signs of contamination were noted during soil (12 July) and groundwater well sampling (19 to 21 July).

4.3 Odours

There were no olfactory indicators of possible contamination noted during soil sampling.

4.4 Fill Material

No obvious fill material was observed.

4.5 Staining

There was no evidence of hydrocarbon staining was observed during the sampling completed on 1 and 2 September 2021

4.6 Vegetation

No vegetation stress was observed across the site.

5. Geology and Hydrogeology

5.1 Geology

Based on the NSW Government website www.minview.nsw.gov.au, the site is underlain by the following geological units:

- Yanawe Formation which comprises of a medium-grained, quartz lithic volcanic sandstone, interbedded with very fine grained volcanic sandstone.
- Douro Group comprising of coarse grained porphyritic, rhyodacitic ignimbrite.
- Barrandella Shale Member comprising of shaly mudstone with thin beds of siltstone, calcareous siltstone and shale.

5.2 Hydrogeology

Groundwater is considered likely to occur in extensive aquifers of low to moderate productivity beneath the Site, where two bores are recorded (Appendix B). These are GW055660 and GW404259, with depths of 31 and 90 m below ground surface respectively. Numerous other bores with depths of between 24 and 105 m and yields of between 0.3 and 50 L/s occur in the area surrounding the Site. The variability in groundwater depth is indicative of the complex groundwater flow and occurrence in the area, where groundwater occurs within connected fractures and fissures of rock at variable depths (Appendix B). During the site visit by Murrang during the preliminary site investigation found minor occurrences of groundwater discharging at the surface in a number of locations.

5.3 Hydrology

Surface water on the site is expected to follow the topographic contours of the site. Several agricultural dams receive surface water from the site. No named water bodies or tributaries of named water bodies are present on the site.

5.4 Soils and Acid Sulfate Soil Risk

Soils are defined by the Boorowa soil landscape is recorded as being present at the Site, with the soil type being a sodosol. Sodosols are texture contrast soils, whereby a coarse soil layer occurs at the top of the soil profile (A horizon) and a finer layer (silts or clays) occurs beneath (B horizon).

The Boorowa landscape unit is characterised by hard-setting soil with moderate permeability. Salinity is not present, there is a low to moderate erosion hazard and low to moderate shrink-swell potential. There inferred to be nitrogen, phosphorous, potassium, and sulfur deficiencies.

Based on the Atlas of Australian Acid Sulfate Soils, the site has a low risk of acid sulfate soil.

6. Preliminary Conceptual Site Model

Conceptual site models (CSM) are a method of presenting site contamination information and the relationships between sources of contamination, how it may have been introduced to the site, possible pathways for contaminant migration and exposure and the receptors that may be affected by contaminants.

The following conceptual site model has been prepared based on the information presented in the Murrange PSI report with the included Lotsearch Report.

6.1 Areas of Environmental Concern

The areas of environmental concern (AECs) as identified by the Murrang PSI for the site are summarised below.

On-site AEC

AEC 1 – General Site Area

Based on the geology of the site, there was potential for risk naturally occurring elevated concentrations of metals that may be associated with mineral deposits in the area.

AEC 2 – Road verges of Wee Jasper Road

Potential for elevated concentrations of lead may be present from historical use of the road during a time when leaded fuels were common.

AEC 3 – Agricultural Paddocks

Agricultural paddocks may have been improved where the use of pesticides and herbicides for the control of weeds and pests.

AEC 4 – Hole of unknown use

A hole was located in the southern section of the site, covered with sheets of tin. The purpose of the hole was not known.

AEC 5 – Stockpiled Material located adjacent to Wee Jasper Road

During the collection of samples along Wee Jasper Road, a soil stockpile which contained fragments of concrete and bitumen was located to the north of sample location LC17. The stockpile was approximately 3 m³ in volume and was covered with grass.

6.2 Contaminants of Potential Concern

To comprehensively characterise the site and based on some of the activities associated within the site and its surroundings and respective AEC the following contaminants of potential concern (COPC) were identified by the PSI.

Table 2: Identified COPC and	the associated AECs
------------------------------	---------------------

AECs	СОРС	
AEC 1 - General Site Area	•	Heavy metals including arsenic, cadmium, copper, chromium, lead, mercury, nickel, zinc, silver, fluoride and barium
AEC 2 - Wee Jasper Road Verge	•	Heavy metals including arsenic, cadmium, copper, chromium, lead, mercury, nickel, zinc

AECs	OPC	
	Herbicides	
AEC 3 - Western Paddocks	 Heavy metals including arsenic, cadmium, copper, chromium, lead, mercury nickel and zinc 	
AEC 4 - Metal Sheet	Total Recoverable Hydrocarbons (TRH)	
Covered Hole	 Benzene, Toluene, Ethylbenzene, Xylenes (BTEX) 	
	Polycyclic Aromatic Hydrocarbons (PAH)	
	 Organochlorine and Organophosphate Pesticides (OCP/OPP) 	
	Polychlorinated Biphenyls (PCB)	
	Heavy metals	
	Asbestos	
AEC 5 - Stockpile	• TRH	
	• BTEX	
	• PAH	
	• OCP/OPP	
	• PCB	
	Heavy Metals	
	Asbestos	

6.3 Exposure Pathways and Receptors

For a contaminant to pose a risk to either human health and/or the environment, there must be a potentially complete or complete pathway between the contaminant and the receptor. Identified receptors at the site are as follows:

- On-site workers associated with the future use of the site.
- Current users of the site.
- Future construction workers engaged as part as the development.
- Future users of the development.
- Ecological receptors.
- Groundwater.

Common pathways for which contaminants may migrate through the environment on the site and result in exposure to receptors are summarised in **Table 3** below.

Pathway	Contaminants of Concern	Exposure Pathway Complete or Potentially Complete (Yes/No)	Comments
Direct Contact with Soil including dermal contact and ingestion	TRH, BTEX, PAH, PCB, OCP/OPP, Heavy Metals.	Potentially Complete	If these contaminants were present in the environment at concentrations that may pose a risk to human health or environmental receptors, then the exposure pathway could be considered as potentially complete.
Direct Contact with Groundwater including dermal contact and ingestion	TRH, BTEX, PAH, Heavy Metals	Incomplete	No abstraction bores are located on or near the site and therefore exposure to groundwater is not possible and the pathway is incomplete.

Table 3: Summary of Exposure Pathways

Pathway	Contaminants of Concern	Exposure Pathway Complete or Potentially Complete (Yes/No)	Comments
Inhalation of gasses and vapour	TRH, BTEX, PAH	Incomplete	No fuel storage facilities have been identified on the site and the concentration of volatile compounds required that may pose a vapour inhalation risk is considered unlikely to occur from general leaks and spills of these compounds.

In its current condition, the only potentially complete contaminant exposure pathway, being direct contact with contaminated soil is dependent on whether COPC are present at concentrations that may pose a risk to human health and/or the environment.

7. Assessment Criteria

The assessment criteria that would be adopted for the investigation will be based on the proposed land uses, which is understood to be low density residential. Therefore, the site would be assessed with the consideration for residential land use, the most stringent criteria under the following applicable guidelines/legislation:

- National Environment Protection Council (1999) 'National Environment Protection (Assessment of Site Contamination) Measure 1999' (amended 2013) (ASC NEPM 2013).
- NSW EPA (1995) 'Sampling Design Guidelines'
- NSW EPA (2020) Contaminated Land Guidelines: Consultants Reporting on Contaminated Land'.

7.1 Soil Assessment Criteria

Given that the site is to be redeveloped for low density residential purposes which would also include garden accessible soil, the adopted assessment criteria are as follows:

- NEPC (1999) National Environment Protection (Assessment of Site Contamination Measure 1999' as amended 2013 (hereafter ASC NEPM 2013).
 - Health Investigation Levels for Residential Sites (HIL A);
 - Health Screening Levels for Residential Sites (HSL A) based on clay lithology at 0-1m depth (most conservative soil and depth criteria);
 - Ecological Investigation Levels (EIL) for aged contaminants Urban Residential and Public Open Space; and
 - Ecological Screening Levels (ESL) for Urban Residential and Public Open Space based on fine texture.

EIL criteria was derived based on site-specific physicochemical properties (pH, cation exchange capacity (CEC) and clay content). These properties were not measured directly, however the parameters have been assumed using a conservative set of values that are considered to be indicative of soil types in the Yass region.

Physicochemical Property	Unit	Average (LC9 0.5-0.6)
рН	pH Unit	5.5
CEC	meq / 100g	5.5
Clay content	% w / w	10

The EIL criteria was calculated using the ASC NEPM 2013 EIL Interactive (Excel) Calculation Spreadsheet using values for aged contaminants. Results of the EIL calculations are presented in **Appendix H**.

These criteria are shown in **Table 5**.

Table 5: Soil Assessment Criteria

Contaminant Group	HIL/HSL – A (mg/kg)	EIL – Urban Residential and Public Open Space (mg/kg)	ESL-Urban Residential and Public Open Space (mg/kg)
Heavy Metals			
Arsenic	100	100	-
Cadmium	20	-	-
Chromium (III)	100	460	-
Copper	6,000	180	-
Lead	300	1,100	-
Nickel	400	120	-
Zinc	7,400	430	-
Mercury	40	-	-
Pesticides			
Aldrin and Dieldrin	6	-	-
Chlordane	50	-	-
DDT	-	180	-
DDT+DDD+DDE	240	-	-
Endrin	10	-	-
НСВ	10	-	-
Heptachlor	6	-	-
Methoxychlor	300	-	-
Mirex	10		
Toxaphene	20	-	-
Chlorpyrifos	160		
TRH and BTEX	·		
TRH C6-C10 – BTEX (F1)	50	-	180
TRH >C ₁₀ -C ₁₆ – Naphthalene (F2)	280	-	120
TRH >C16-C34 (F3)	-	-	1,300

Contaminant Group	HIL/HSL – A (mg/kg)	EIL – Urban Residential and Public Open Space (mg/kg)	ESL-Urban Residential and Public Open Space (mg/kg)
TRH >C34-C40 (F4)	-	-	5,600
Benzene	0.7	-	65
Toluene	480	-	105
Ethylbenzene	NL	-	125
Xylenes	110	-	45
PAHs and PCBs			
Total PAH	300	-	-
Benzo(a)pyrene	-	-	0.7
Carcinogenic PAHs as B(a)P TEQ	3	-	-
Naphthalene	5	170	-
Total PCB	1	-	-

8. Data Quality Objectives

This section outlines the data quality objectives (DQOs) applied to the investigation.

The DQO process is a planning tool that relies on scientific methods for establishing criteria for data quality and for designing data collection programs. The DQO defines the experimental process required to test a hypothesis. The DQO process aims to ensure that efforts relating to data collection are cost-effective, by eliminating unnecessary, duplicative or overly precise data whilst at the same time, ensuring the data collected is of sufficient quality and quantity to support defensible decision making.

The DQO process consists of seven steps, which are designed to clarify the study objectives, define the appropriate type of data and specify tolerable levels of potential decision errors. The seven-step DQO process adopted for this investigation is as follows:

Step 1: State the Problem – concisely describe the problem to be studied. Review prior studies and existing information to gain a sufficient understanding to define the problem;

Step 2: Identify the Decision – identify what questions the study will attempt to resolve, and what actions may result;

Step 3: Identify the Inputs to the Decision – identify the information that needs to be obtained and the measurements that need to be taken to resolve the decision statement;

Step 4: Define the Study Boundaries – specify the time periods and spatial area to which decisions will apply. Determine when and where data should be collected;

Step 5: Develop a Decision Rule – define the statistical parameter of interest, specify the action level, and integrate the previous DQO outputs into a single statement that describes the logical basis for choosing among alternative actions;

Step 6: Specify Tolerable Limits on Decision Errors – define the decision maker's tolerable decision error rates based on a consideration of the consequences of making an incorrect decision; and

Step 7: Optimise the Design –evaluate information from the previous steps and generate alternative data collection designs. Choose the most resource-effective design that meets all DQOs.

The DQOs derived for the investigation are presented in Table 6.

Table 6: DQOs derived for the Investigation

Step	Details
Step 1: State the Problem	The PSI completed for the site identified a potential contamination risk associated with the potential presence of naturally occurring heavy metals and herbicide use across the site. The purpose of the investigation was to assess whether contaminants from these potential sources are present that may pose a risk to human health and/or the environment for future residential use.
Step 2: Identify the Decision	The purpose of the investigation is to characterise the contamination status of the site to assess the site's suitability for low density residential use.
Step 3: Identify the Inputs into the Decision	The COPCs selected are based on the review of previous investigations and based on former site activities as described in Section 3 and Section 4 . The site is proposed to be used for low density residential purposes with accessible soil for gardens. Therefore, the site would be assessed the most stringent criteria for residential use.

Step	Details
Step 4: Define the Site Boundaries	Values for each criteria are presented in Section 7 . The lateral site boundary is shown in Figure 1 and Figure 2 , Appendix A . The vertical boundary of the site is approximately 0.5 m below ground level which was the maximum depth of from which soil samples were collected. The site investigation work was completed on 1 and 2 September 2021 with the results of the assessment limited to the condition of the site as of the date sampling was completed.
Step 5: Develop a Decision Rule	 If analytical results for COPCs are below the adopted criteria for residential sites, then the site would be considered suitable for the land uses permitted under the current zone and no further management or remediation would be required. However, should the concentration of one or more COPC exceed the adopted criteria value then further investigation may be required to delineate the lateral and vertical extent of the impact and/or recommendations for the remediation/management of contamination that may be required. If the laboratory quality assurance / quality control data are within acceptable ranges, the results will be considered suitable for use. If the COPC is reported below the laboratory detection limit in the samples applicable to a specific pathway, then it will be considered that there is no evidence of a potential complete source-pathway-receptor linkage and therefore inclusion of that pathway in further assessment may not be required.
Step 6: Specify Tolerable Limits	 The tolerable limits for the investigation adopted for quality assurance/quality control (QA/QC) purposes are as follows: The relative percentage difference (RPD) for laboratory duplicates is as per the laboratory's quality assurance targets accepted under their NATA accreditation. Recovery of matrix spikes and surrogate spikes is as per the laboratory's Quality Assurance targets accepted under their NATA accreditation. The tolerable limits for field QA/QC and duplicates data are as follows: RPD criteria of 30% or less, for concentrations > or = 5 times PQL.
Step 7: Optimise the Design	The investigation program for this assessment is detailed in Section 9 to adequately characterise the identified risks of contamination across the site (Section 3). As a summary, eighteen (18) boreholes were advanced across the site to assess the potential of finding contaminated imported fill material. The spacing between sample locations was determined by the level of risk and potential heterogeneity of the identified COPCs. Based on the conceptual site model, the risk to groundwater was considered negligible and therefore groundwater sampling was not considered necessary.

9. Sampling, Analysis and Quality Plan

Details of the sampling and analytical plan adopted to meet the project objectives are presented in the following sections.

9.1 Chronology of Events

The chronology of key project events is summarised in **Table 7** below:

Table	7:	Summary	of the	Chronology	of Works
-------	----	---------	--------	------------	----------

Date	Event				
12 August 2021	Lanterra was engaged by Catalyze to undertake a detailed site investigation.				
1-2 September 2021	Fieldwork and collection of soil samples				
20 September 2021	Receipt of Laboratory Results. It was noted that results were delayed due to the effect COVID-19 had on couriers and laboratory resources.				
5 October 2021	Issue of DSI report to the client.				

9.2 Sampling Plan

9.2.1 Soil Sampling Plan

A systematic grid based sampling plan was implemented to assess the site for potential COPCs in each AEC to characterise the potential contamination status of soil. The soil sampling investigation with the associated sampling locations and the rationale are presented in the table below and in **Figure 4**, **Appendix A**.

The rationale for each sample across the site is summarised in **Table 8** below.

Table 8: Rationale for soil sampling locations

Sample Location	Target Location	Rationale
LC1, LC9 and LC18	AEC 1 – General Site Area	Boreholes distributed across the eastern section of the site in a general systematic sampling pattern. As the primary COPCs were heavy metals associated with naturally occurring metals, the distribution of metals is anticipated to be homogenous and the distribution and number of samples was considered appropriate.
LC13 – LC17	AEC 2 – Wee Jasper Road Verge	Boreholes placed along the site boundary and road verge of Wee Jasper Road. The number of samples and their locations were considered appropriate based on the anticipated contaminant distribution associated with the road.
LC9 – LC12	AEC 3 – Western Paddocks	Boreholes distributed across the western paddock in a systematic sampling pattern. As the primary COPCs were herbicides, the distribution of these is anticipated to be homogenous and the distribution and number of samples was considered appropriate.
Hole	AEC 4 – Metal Covered Hole	One sample was collected and analysed for a broad range of contaminants including TRH, BTEX, PAH, OCP/OPP, PCB and metals. Other than

Sample Location	Target Location	Rationale
		the metal sheets covering the hole, no other anthropogenic materials were observed and the rick of asbestos in soil was considered to be low
		risk of aspestos in soil was considered to be low.

9.2.2 Quality Assurance / Quality Control

For quality assurance / quality control (QA/QC) purposes, the following samples were collected in accordance with AS4482.1 (2005).

The following field QA/QC samples were collected during sampling:

- QC1 was a field duplicate collected with primary sample LC2 0.0-0.1
- QC2 was a field triplicate collected with primary sample LC2 0.0-0.1

9.3 Analytical Plan

From the samples collected across the site, the analytical plan presented in **Table 9** was executed to assess the identified COPCs.

	Table	9 : A	Analytical	plan	for the	investigation
--	-------	--------------	------------	------	---------	---------------

Sample Type	Sample Media	TRH	втех	РАН	Phenols	оср/орр	Heavy Metals	Herbicides
Primary	Soil	2	2	2	2	2	19	5
Duplicate	Soil	0	0	0	0	0	1	0
Triplicate	Soil	0	0	0	0	0	1	0

9.4 Decontamination procedures

The following decontamination procedures were undertaken for the investigation:

- Single-use disposable nitrile gloves were used to extract the samples from each sampling location to prevent cross-contamination.
- The sampling equipment above that was reused for sampling different groundwater wells was rinsed with a decontamination solution (2% Decon 90 and tap water), followed by a secondary rinse with free deionised water between collecting each sample.
- Samples collected were placed in laboratory prepared containers for each media.

10. Methods

10.1 Soil Investigation

A suitably qualified environmental scientist was mobilised to the site with appropriate equipment to undertake the soil investigation required. Methodology as below:

- A review of dial before you dig documentation was completed to assess for possible underground services.
- Samples were collected with the aid of a hand held auger and were advanced to a depth of approximately 0.6 m below ground level (bgl).
- Borehole samples were collected at the surface (0.0-0.1 m), 0.5m below ground level.
- Single-use disposable nitrile gloves were used to extract the samples from each sampling location to prevent cross-contamination.
- Samples were collected directly from the auger with care taken to not collect soil that was in contact with the auger.
- Samples were placed in a laboratory prepared 250 millilitre (mL) glass jar with a Teflon lined screw top lid and zip lock bags for asbestos analysis. Details of the sample, including project number, sample number, sample depth and date of the sample were written on each sample container.
- Each soil sample was described in general accordance with the Unified Soil Classification System (USCS) and details of any discolouration, staining, odours or other indicators of contamination noted.
- Each sample was field screened with a PID for volatile organic compounds (VOCs).
- All samples were immediately placed and stored in an ice-filled esky to keep them chilled. Samples were transported to a NATA accredited laboratory with the signed chain of custody (COC) form with the required analysis (**Appendix C**).
- The auger was cleaned and rinsed between sampling locations to prevent cross contamination between samples.

11. Quality Assurance (QA) and Quality Control (QC) Plan

11.1 Field QA/QC

Field duplicate and field triplicate samples were collected for calculating the relative percent difference (RPD) and assess the precision and accuracy of the laboratory. An RPD of less than 50% is considered acceptable where the analyte concentration is greater than five (5) times the laboratory LOR. Should the RPD be greater than 50%, then further investigation as to the reason for high RPD would occur.

The duplicate and triplicate samples were collected with the following primary samples:

• QC1 and QC2 were collected with primary sample LC2 0.0-0.1 on 1 September 2021 and analysed for heavy metals.

The calculated RPDs (where applicable) for detectable concentrations of COPCs was less than 50% for all samples between QC1 and the primary sample.

Arsenic and copper exceeded the acceptable criteria between QC2 and the primary sample with RPDs of 67% and 52% respectively. These exceedances were attributed to sample heterogeneity and as both the primary and QC samples were below the adopted assessment criteria, the RPD exceedances do not alter the outcomes of the assessment.

Therefore, analytical data is considered suitable for the purpose of the assessment.

The QA/QC results and calculated RPDs are presented on **Table 1 and Table 2 of Appendix B**.

11.2 Laboratory QA/QC

A review of the laboratory QA/QC data is summarised below (Appendix C).

Holding Times

Overall the holding times of each sample were within the required holding times with the exception of the following:

Volatile organic compounds (VOC) in samples Hole 1 0.0-0.1 and SP2. This was attributed to delays that were experienced with the courier during COVID-19 lockdowns. However, as concentrations of VOCs (in the form of TRH and BTEX) were below the laboratory limit of reporting, the exceedance of holding times is not considered to affect the outcome of the investigation.

Laboratory Accreditation

All analysis was performed in NATA accredited laboratory as follow:

- **Primary Laboratory:** SGS Australia Pty Ltd (NATA accreditation No. 2562)
- Secondary Laboratory: Envirolab Services Pty Ltd (NATA accreditation No. 2901)

Surrogate and Spike Recoveries

All surrogate recoveries were within the tolerable limits.

Matrix Spike

All matrix spike recoveries were within tolerable limits with the exception of the following:

Table 10: Matrix spike samples that Exceed the Laboratory QA/QC criteria

Report Number	Media	QC sample	Sample Number	Analyte	Recovery (%)	Laboratory Comment				
SE223496	Soil	SE223638.001	LB232813.004	Lead	-145	Recovery failed acceptance due to matrix interference				
				Zinc	-1	Recovery failed acceptance due to matrix interference				
		SE223496.014	LB232762.004	Bromofluoro benzene	69	At least 2 of 3 surrogates are within acceptance criteria				

Based on the comments provided by the laboratory, the nature of the site, and the fact that the exceedance was reached in a surrogate sample, the exceedance is not considered to have impacted the outcome of this investigation.

Laboratory Control Sample Results

All laboratory control sample results were within the tolerable limits.

Laboratory Duplicate Results

The duplicate sample RPDs were within the tolerable range for each sample.

Laboratory Blank Results

All method laboratory blanks were below the laboratory LOR and therefore within tolerable limits.

12. Results

The findings from site inspection and laboratory analytical results of the investigation are presented in the following sections.

12.1 Visual Observations / Field Measurements

The site investigation identified fill and natural material across the site during sampling, with the exception of the sample collected from the stockpile.

Soil material comprised predominantly of a brown sandy silt at the surface. Topographically high areas had exposed rock at the surface which also had gravel in the near surface soil. Sample locations advanced at these locations generally encountered refusal on rock at approximately 0.1-0.2 m.

Where refusal was not encountered, a red-brown coloured silty clay was encountered at approximately 0.2-0.3 m.

Other than the stockpile, no visual or olfactory indicators were detected in any of the soil samples collected. The stockpile located in the north-western section of the site had fragments of bitumen and concrete. No other indicators of contamination were noted in the stockpile.

Field screening of each sample with a calibrated photoionisation detector (PID) was completed for each sample. PID measurements ranged from 0.0 to 1.1 indicating a negligible potential for ionisable volatile organic compounds.

Copies of the borehole logs are presented in Appendix E.

12.2 Analytical Results

A total of nineteen (19) primary soil samples were collected for analysis. A summary of the analytical results is presented in **Tables 1 and 2**, **Appendix B**, while copies of the laboratory reports, sample receipt and COCs are presented in **Appendix C**.

A brief summary of the results is presented below.

TRH, BTEX, OPP/OCP, PAH, PCB and Asbestos

One (1) soil sample collected from the hole beneath the metal sheeting was analysed for TRH, BTEX, OPP/OCP, PAH, PCB, Phenols, and Asbestos. The concentration of each of these COPCs was below the laboratory limit of reporting (LOR) and therefore the adopted assessment criteria.

Heavy Metals

Heavy metals were detected in each sample analysed, however these concentrations were below the adopted assessment criteria for each metal.

Based on the consistency of metal concentrations measured across the site, the recorded concentrations were considered indicative of natural background levels.

13. Summary and Conclusions

Catalyze engaged Lanterra to complete a detailed site investigation (DSI) for Lots 2, 3 and 4 of DP 1185025 and Lot 1 of DP 1007355, Yass, NSW.

The objective of the investigation was to assess the suitability of the site for the land uses permitted under the R5: Large Lot Residential Zone and adequately characterise the condition of the site including soil sampling from a contamination perspective.

The results of the PSI by Murrang and the soil sampling completed as a part of this investigation are summarised below:

- The majority of the site was used for agricultural purposes. Two (2) existing residential properties are located on the site.
- Sources of potential contamination that had been identified included herbicides that may have been used as a part of pasture improvement, possible lead that may have been deposited at the surface by vehicular traffic along Wee Jasper Road.
- Soil across the site comprised of a sandy silt at the surface while a silty clay was encountered below the sandy silt.
- Based on the analytical results of soil samples, COPCs were below the adopted criteria in all soil samples analysed while no traces of anthropogenic materials were observed in soil across the site.
- A small stockpile of 3 m³ was located in the north-western section of the site. The stockpile had traces of asphalt and concrete, however concentrations of COPCs in soil were below the adopted assessment criteria. Based on the results, the soil is considered suitable to remain on the site, while the amount of concrete and asphalt is not prevent the use of the soil from an aesthetic perspective.

Based on the results of the investigation and the current setting of the site, the risk of contamination that may pose a risk to the future land uses is low. Therefore, Lanterra concludes the that the site is suitable for future residential land use.

While no contamination was identified across the site, a construction environment management plan (CEMP) which includes an unexpected finds protocol (UFP) to manage any unexpected occurrences of contamination should they be encountered is recommended.

14. References

- Murrang (2021) 'Preliminary Site Investigation of 16-21 Cusack Place, Yass'
- National Environmental Protection Council (NEPC) (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended April 2013) (hereafter ASC NEPM 2013)
- ADWG (2011) NHRMC 2011, Australian Drinking Water Guideline Version 3.6 (March 2021)
- NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd Ed.) (2017)
- NSW EPA (1995) Sampling Design Guidelines (1995)
- NSW EPA (2020) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites
- Standards Australia (2005). Guide to the investigation and sampling of sites with potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds AS4482.1 (2005) and Part 2: Volatile substances, AS4482.2 (2005).

15. Glossary

ACM	Asbestos-containing material
ACT	Australian Capital Territory
AHD	Australian Height Datum
AEC	Area of Environmental Concern
ASC NEPM	National Environment Protection (Assessment of Site Contamination Measure 1999' as
2013	amended 2013.
Bgl	Below ground level
BTEXN	Benzene, Toluene, Ethylbenzene, Xylenes, Naphthalene
CEC	Cation Exchange Capacity
EMP	Environmental Management Plan
COPC	Contaminants of Potential Concern
CSM	Conceptual Site Model
DSI	Detailed Site Investigation
EIL	Ecological Investigation Level
EPSDD	Environment, Planning and Sustainable Development Directorate
ESL	Ecological Screening Level
EPA	Environment Protection Authority
GIL	Groundwater Investigation Level
HIL	Health Investigation Level
HDPE	High-density polyethylene
HSL	Health Screening Level
kg	Kilogram
Lanterra	Lanterra Consulting Pty Limited
LOR	Limit of Reporting
mg	Milligram
μg	Microgram
μg/L	Microgram per litre
NATA	National Association of Testing Authorities
NEMP	National Environmental Management Plan
NEPM	National Environment Protection Measure
NSW	New South Wales
PSI	Preliminary Site Investigation
QA	Quality Assurance
QC	Quality Control
RPD	Relative Percentage Difference
SAQP	Sampling, Analysis and Quality Plan
TRH	Total Recoverable Hydrocarbon
UFP	Unexpected Finds Protocol
USCS	Unified Soil Classification System
UST	Underground Storage Tank

Figures

Appendix A

Results Summary Tables

P21091 - Detailed Site Investigation, Cusack Place, Yass Table 1: Analytical Results - Heavy Metals

						Field_ID	LC1 0.0-0.1	LC2 0.0-0.1	LC3 0.2-0.3	LC4 0.0-0.1	LC5 0.0-0.1
						Depth m	0.0-0.1	0.0-0.1	0.2-0.3	0.0-0.1	0.0-0.1
						Sampled-date	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
						Fill/Natural					
				ASC NEPM (2013)	ASC NEPM (2013) HSL	ASC NEPM (2013)					
				EIL/ESL Urban	A (mg/kg) 0.0-	HILA					
				Residential and	1.0m/1.0-2.0m/2.0-						
				Public Open Space	4.0m						
Method_Type	ChemName	Units	EQL	1							
Metals in soil	Arsenic, As	mg/kg	1	100		100	3	3	7	6	6
	Cadmium, Cd	mg/kg	0.3			20	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
	Chromium, Cr	mg/kg	0.3	490		100	13	30	6.6	6.8	15
	Copper, Cu	mg/kg	0.5	180		6000	6.2	4.1	1.2	2.2	2.3
	Lead, Pb	mg/kg	1	1100		300	13	11	16	12	14
	Nickel, Ni	mg/kg	0.5	120		400	4.5	3.3	1.2	1.3	1.8
	Zinc, Zn	mg/kg	2	430		7400	24	7.7	12	8.3	11
	Mercury	mg/kg	0.05			40	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

P21091 - Detailed Site Investigation, Cusack Place, Yass Table 1: Analytical Results - Heavy Metals

						Field_ID	LC6 0.0-0.1	LC7 0.0-0.1	LC8 0.25-0.35	LC9 0.0-0.1	LC10 0.0-0.1	LC11 0.0-0.1	LC12 0.0-0.1	LC13 0.0-0.1	LC14 0.0-0.1	LC15 0.0-0.1	LC16 0.0-0.1	LC17 0.0-0.1	LC18 0.0-0.1	Hole 0.0-0.1	QC1
																				1 '	
																				[]	
						Depth m	0.0-0.1	0.0-0.1	0.25-0.3	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	
						Sampled-date	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
						Fill/Natural															
				ASC NEPM (2013)	ASC NEPM (2013) HSL	ASC NEPM (2013)														· · · · ·	
				EIL/ESL Urban	A (mg/kg) 0.0-	HIL A														1 '	
				Residential and	1.0m/1.0-2.0m/2.0-															1 1	
				Public Open Space	4.0m															1 1	
Method_Type	ChemName	Units	EQL]																	
Metals in soil	Arsenic, As	mg/kg	1	100		100	4	4	3	2	2	3	3	7	6	5	4	4	5	3	2
	Cadmium, Cd	mg/kg	0.3			20	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
	Chromium, Cr	mg/kg	0.3	490		100	5.4	3.2	7.2	7.9	19	38	25	19	21	19	34	22	32	14	21
	Copper, Cu	mg/kg	0.5	180		6000	3.7	1.5	3.3	3.7	5.9	7.2	6.2	12	13	12	8.2	7.3	3.5	3.7	3.9
	Lead, Pb	mg/kg	1	1100		300	13	12	12	11	9	11	9	17	20	16	16	23	16	13	14
	Nickel, Ni	mg/kg	0.5	120		400	2.6	1.5	2	2.1	3.5	4.5	4.1	19	25	21	9	6.2	2.7	2.2	2.5
	Zinc, Zn	mg/kg	2	430		7400	30	13	8.8	7.3	11	15	12	68	90	73	26	32	10	110	8
	Mercury	mg/kg	0.05			40	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
lanterra consulting

P21091 - Detailed Site Investigation, Cusack Place, Yass Table 2: Analytical Results - TRH, BTEX, PAH, OCP,OPP, Herbicides, PCB, Asbestos

						Field_ID	LC10 0.0-0.1	LC11 0.0-0.1	LC12 0.0-0.1	LC13 0.0-0.1	LC14 0.0-0.1	LC15 0.0-0.1	LC16 0.0-0.1	LC17 0.0-0.1	LC18 0.0-0.1	Hole 0.0-0.1
						Depth m	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1
						Sampled-date	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
				ASC NEPM (2013)	ASC NEPM (2013) HSL	ASC NEPM (2013)								I		
				EIL/ESL Urban	A (mg/kg) 0.0-	HILA										
				Residential and	1.0m/1.0-2.0m/2.0-											
			1	Public Open Space	4.0m											
Method_Type	ChemName	Units	EQL													
Pesticides	Alpha BHC	mg/kg	0.1			10	N.A.	<0.1								
I Colledes	Lindane	mg/kg	0.1				N.A.	<0.1								
	Heptachlor	mg/kg	0.1			6	N.A.	< 0.1								
	Aldrin	mg/kg	0.1			6	N.A.	<0.1								
	Beta BHC	mg/kg	0.1				N.A.	<0.1								
	Heptachlor epoxide	mg/kg	0.1				N.A.	<0.1								
	o,p'-DDE	mg/kg	0.1				N.A.	<0.1								
	Alpha Endosulfan	mg/kg	0.2			270	N.A.	<0.2								
	Gamma Chlordane	mg/kg	0.1			50	N.A.	<0.1								
	Aipna Chiordane trans-Nonachlor	mg/kg	0.1			50	N.A.	<0.1								
	p,p'-DDE	mg/kg	0.1				N.A.	<0.1								
	Dieldrin	mg/kg	0.2			6	N.A.	<0.2								
	Endrin	mg/kg	0.2			10	N.A.	<0.2								
		mg/kg	0.1				N.A.	<0.1								
	Beta Endosulfan	mg/kg	0.1				N.A.	<0.1								
	p,p'-DDD	mg/kg	0.1			240	N.A.	<0.1								
	p,p'-DDT	mg/kg	0.1	180		240	N.A.	<0.1								
	Endosulfan sulphate	mg/kg	0.1				N.A.	<0.1								
	Endrin Aldehyde Methowshlor	mg/kg	0.1			10	N.A.	<0.1								
	Endrin Ketone	mg/kg	0.1			500	N.A.	<0.1								
	Isodrin	mg/kg	0.1				N.A.	<0.1								
	Mirex	mg/kg	0.1			10	N.A.	<0.1								
Organophosphorus	Dichlorvos	mg/kg	0.5				N.A.	<0.5								
Pesticides	Dimethoate Diazinon (Dimovlate)	mg/kg	0.5				N.A.	<0.5								
	Fenitrothion	mg/kg	0.2				N.A.	<0.2								
	Malathion	mg/kg	0.2				N.A.	< 0.2								
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2			160	N.A.	<0.2								
	Parathion-ethyl (Parathion)	mg/kg	0.2				N.A.	<0.2								
	Methidathion	mg/kg	0.2				N.A.	<0.5								
	Ethion	mg/kg	0.2				N.A.	<0.2								
	Azinphos-methyl (Guthion)	mg/kg	0.2				N.A.	<0.2								
Herbicides	4-Chlorophenocy acetic acid (4-CPA)	mg/kg	0.5				<0.5	< 0.5	<0.5	<0.5	N.A.	N.A.	< 0.5	N.A.	N.A.	N.A.
	2,4-D ((2,4-Dichlorophenoxy) acetic acid	mg/kg	0.01				<0.01	<0.01	<0.01	<0.01	N.A.	N.A.	<0.01	N.A.	N.A.	N.A.
	2.6-D	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5	N.A.	N.A.	<0.5	N.A.	N.A.	N.A.
	Bromoxynil	mg/kg	0.5				<0.5	< 0.5	<0.5	< 0.5	N.A.	N.A.	< 0.5	N.A.	N.A.	N.A.
	Clopyralid	mg/kg	0.5				<0.5	< 0.5	<0.5	<0.5	N.A.	N.A.	< 0.5	N.A.	N.A.	N.A.
	Dichloroprop / Dichloroprop R	mg/kg	0.01				<0.01	<0.01	<0.01	<0.01	N.A.	N.A.	<0.01	N.A.	N.A.	N.A.
	Dinoseb	mg/kg	0.01				<0.5	<0.5	<0.5	<0.5	N.A.	N.A.	<0.5	N.A.	N.A.	N.A.
	Fluroxypyr	mg/kg	0.5				<0.5	< 0.5	<0.5	<0.5	N.A.	N.A.	< 0.5	N.A.	N.A.	N.A.
	Ioxynil	mg/kg	0.5				<0.5	< 0.5	<0.5	<0.5	N.A.	N.A.	< 0.5	N.A.	N.A.	N.A.
	mecoprop	mg/kg	0.01				<0.01	<0.01	<0.01	<0.01	N.A.	N.A.	<0.01	N.A.	N.A.	N.A.
	MCPR	mg/kg	0.01				<0.01	<0.01	<0.01	<0.01	N.A.	N.A.	<0.01	N.A.	N.A.	N.A.
	Picloram	mg/kg	0.01				<0.01	<0.01	<0.01	<0.01	N.A.	N.A.	<0.01	N.A.	N.A.	N.A.
	Triclopyr	mg/kg	0.01				<0.01	< 0.01	< 0.01	<0.01	N.A.	N.A.	< 0.01	N.A.	N.A.	N.A.
	2,4,5-T	mg/kg	0.01				<0.01	< 0.01	< 0.01	<0.01	N.A.	N.A.	<0.01	N.A.	N.A.	N.A.
	2,4,5-TP	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5	N.A.	N.A.	<0.5	N.A.	N.A.	N.A.
	Simazine	me/ke	0.5				<0.5	<0.5	<0.5	<0.5	N.A.	N.A.	<0.5	N.A.	N.A.	N.A.
	Atrazine	mg/kg	0.5				< 0.5	< 0.5	<0.5	< 0.5	N.A.	N.A.	< 0.5	N.A.	N.A.	N.A.
	Propazine	mg/kg	0.5				< 0.5	< 0.5	<0.5	<0.5	N.A.	N.A.	< 0.5	N.A.	N.A.	N.A.
	Terbuthylazine	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5	N.A.	N.A.	<0.5	N.A.	N.A.	N.A.
	Prometryn	mø/kg	0.5				<0.5	<0.5	<0.5	<0.5	N.A.	N.A.	<0.5	N.A.	N.A.	N.A.
	Terbutryn	mg/kg	0.5				<0.5	< 0.5	<0.5	<0.5	N.A.	N.A.	<0.5	N.A.	N.A.	N.A.
	Cyanazine	mg/kg	0.5				<0.5	< 0.5	<0.5	<0.5	N.A.	N.A.	< 0.5	N.A.	N.A.	N.A.
	Hexazinone	mg/kg	1	170	5 (41) (41)		<1	<1	<1	<1	N.A.	N.A.	<1	N.A.	N.A.	N.A.
PAHs in Soil	Naphthalene	mg/kg	0.1	170	5/NL/NL		N.A.	<0.1								
	1-methylnaphthalene	mg/kg mg/kg	0.1				N.A.	<0.1								
	Acenaphthylene	mg/kg	0.1				N.A.	<0.1								
	Acenaphthene	mg/kg	0.1				N.A.	<0.1								
	Fluorene	mg/kg	0.1				N.A.	<0.1								
	Anthracene	mg/kg	0.1				N.A.	<0.1								
	Fluoranthene	mg/kg	0.1				N.A.	<0.1								
1	Pyrene	mg/kg	0.1				N.A.	<0.1								

P21091 - Detailed Site Investigation, Cusack Place, Yass Table 2: Analytical Results - TRH, BTEX, PAH, OCP,OPP, Herbicides, PCB, Asbestos

						Field_ID	LC10 0.0-0.1	LC11 0.0-0.1	LC12 0.0-0.1	LC13 0.0-0.1	LC14 0.0-0.1	LC15 0.0-0.1	LC16 0.0-0.1	LC17 0.0-0.1	LC18 0.0-0.1	Hole 0.0-0.1
						Depth m	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1
						Sampled-date	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
						Fill/Natural										
				ASC NEPM (2013)	ASC NEPM (2013) HSL	ASC NEPM (2013)										
				EIL/ESL Urban	A (mg/kg) 0.0-	HILA										
				Residential and	1.0m/1.0-2.0m/2.0-											
				Public Open Space	4.0m											
Method_Type	ChemName	Units	EQL													
	Benzo(a)anthracene	mg/kg	0.1				N.A.	< 0.1								
	Chrysene	mg/kg	0.1				N.A.	< 0.1								

P21091 - Detailed Site Investigation, Cusack Place, Yass Table 2: Analytical Results - TRH, BTEX, PAH, OCP,OPP, Herbicides, PCB, Asbestos

						Field_ID	LC10 0.0-0.1	LC11 0.0-0.1	LC12 0.0-0.1	LC13 0.0-0.1	LC14 0.0-0.1	LC15 0.0-0.1	LC16 0.0-0.1	LC17 0.0-0.1	LC18 0.0-0.1	Hole 0.0-0.1
						Depth m	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1
						Sampled-date	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
						Fill/Natural										
				ASC NEPM (2013)	ASC NEPM (2013) HSL	ASC NEPM (2013)										
				EIL/ESL Urban	A (mg/kg) 0.0-	HILA										
				Residential and	1.0m/1.0-2.0m/2.0-											
				Public Open Space	4.0m											
Method_Type	ChemName	Units	EQL	1												
I	Benzo(b&j)fluoranthene	mg/kg	0.1				N.A.	< 0.1								
	Benzo(k)fluoranthene	mg/kg	0.1				N.A.	< 0.1								
	Benzo(a)pyrene	mg/kg	0.1	0.7			N.A.	< 0.1								
	Indeno(1,2,3-cd)pyrene	mg/kg	0.1				N.A.	< 0.1								
	Dibenzo(ah)anthracene	mg/kg	0.1				N.A.	< 0.1								
	Benzo(ghi)perylene	mg/kg	0.1				N.A.	< 0.1								
	Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td></td><td></td><td>3</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td></td></lor=0<>	TEQ (mg/kg)	0.2			3	N.A.									
	Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td></td><td></td><td>3</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>< 0.3</td></lor=lor<>	TEQ (mg/kg)	0.3			3	N.A.	< 0.3								
	Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td></td><td></td><td>3</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>< 0.2</td></lor=lor>	TEQ (mg/kg)	0.2			3	N.A.	< 0.2								
	Total PAH (18)	mg/kg	0.8			300	N.A.	< 0.8								
PCBs in Soil	Arochlor 1016	mg/kg	0.2				N.A.	< 0.2								
	Arochlor 1221	mg/kg	0.2				N.A.	< 0.2								
	Arochlor 1232	mg/kg	0.2				N.A.	< 0.2								
	Arochlor 1242	me/ke	0.2				N.A.	<0.2								
	Arochlor 1248	mg/kg	0.2				N.A.	<0.2								
	Arechlor 1254	mg/kg	0.2				N A	NA	<0.2							
	Arochlor 1250	mg/kg	0.2				N A	N.A.	N A	N A	N A	NA	N A	NA	NA	<0.2
	Arechlor 1262	mg/kg	0.2				NA	<0.2								
	Arochlor 1262	mg/kg	0.2				N A	N A	N A	N A	N A	NA	N A	NA	NA	<0.2
	Total PCBs (Arochlors)	mg/kg	1			1	N A	N.A.	N A	N A	N A	NA	N A	NA	NA	<1
TRH Soil C10 C40 NEDM	TPH C10 C14	mg/kg	20				N.A.	NA	< 20							
1Ki1 30il C10-C40 NEP W	TPH C15 C29	mg/kg	45				N.A.	<20								
	TRU C20 C2C	mg/kg	45				N.A.	<4J								
	TRH C29-C36	mg/kg	45				N.A.	<45								
	TRH C37-C40	mg/kg	100				N.A.	<100								
	TRH >C10-C16	mg/kg	25	100	202 4 11 4 11		N.A.	<25								
	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	120	280/NL/NL		N.A.	<25								
	TRH >C16-C34 (F3)	mg/kg	90	1300			N.A.	<90								
	TRH >C34-C40 (F4)	mg/kg	120	5600			N.A.	<120								
	TRH C10-C36 Total	mg/kg	110				N.A.	<110								
	TRH >C10-C40 Total (F bands)	mg/kg	210				N.A.	<210								
BTEX + VOC	Benzene	mg/kg	0.1	65	0.7/1/2		N.A.	< 0.1								
	Toluene	mg/kg	0.1	105	480/NL/NL/NL		N.A.	< 0.1								
	Ethylbenzene	mg/kg	0.1	125	NL/NL/NL		N.A.	< 0.1								
	m/p-xylene	mg/kg	0.2				N.A.	< 0.2								
	o-xylene	mg/kg	0.1				N.A.	< 0.1								
	Total Xylenes	mg/kg	0.3	45	110/310/NL		N.A.	< 0.3								
	Total BTEX	mg/kg	0.6				N.A.	< 0.6								
	Benzene (FO)	mg/kg	20		0.7/1/2		N.A.	< 0.1								
	TRH C6-C9	mg/kg	0.1				N.A.	<20								
	TRH C6-C10	mg/kg	25				N.A.	<25								
	TRH C6-C10 minus BTEX (F1)	mg/kg	25	180	50/90/150		N.A.	<25								

Appendix C

Laboratory Reports and Chain of Custody Documentation

ANALYTICAL REPORT

іата

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample # 19;A portion of the sample supplied has been sub-sampled for asbestos analysis in soil according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

17 soil samples have been placed on hold as no tests have been assigned for them by the client. These samples will not be processed. Phenoxy Acid Herbicides subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Number 2562/14420. Report Number ME322581

SIGNATORIES

Akheegar BENIAMEEN Chemist

kmln

Ly Kim HA **Organic Section Head**

Bennet LO Senior Chemist

Shane MCDERMOTT Inorganic/Metals Chemist

Kamrul AHSAN Senior Chemist

Teresa NGUYEN Organic Chemist

SGS Australia Ptv Ltd ABN 44 000 964 278

Environment. Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015

Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group Page 1 of 17

VOC's in Soil [AN433] Tested: 15/9/2021

			Hole 0.0-0.1	SP2
PARAMETER	UOM	LOR	SOIL - 2/9/2021 SE223496.019	SOIL - 2/9/2021 SE223496.021
Benzene	mg/kg	0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 15/9/2021

			Hole 0.0-0.1	SP2
			SOIL - 2/9/2021	SOIL - 2/9/2021
PARAMETER	UOM	LOR	SE223496.019	SE223496.021
TRH C6-C9	mg/kg	20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 14/9/2021

			Hole 0.0-0.1	SP2
			SOIL -	SOIL -
			2/9/2021	2/9/2021
PARAMETER	UOM	LOR	SE223496.019	SE223496.021
TRH C10-C14	mg/kg	20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210

SE223496 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 14/9/2021

			Hole 0.0-0.1	SP2
			SOIL	SOIL
			-	-
PARAMETER	UOM	LOR	SE223496.019	SE223496.021
Naphthalene	mg/kg	0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8

OC Pesticides in Soil [AN420] Tested: 14/9/2021

			Hole 0.0-0.1	SP2
			00"	00"
			SOIL	SUIL
			2/9/2021	2/9/2021
PARAMETER	UOM	LOR	SE223496.019	SE223496.021
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1

OP Pesticides in Soil [AN420] Tested: 14/9/2021

			Hole 0.0-0.1	SP2
			SOIL	SOIL
			- 2/0/2021	- 2/0/2021
PARAMETER	UOM	LOR	SE223496.019	SE223496.021
Dichlorvos	mg/kg	0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7

SE223496 R0

PCBs in Soil [AN420] Tested: 14/9/2021

			LC10 0.0-0.1	LC11 0.0-0.1	LC12 0.0-0.1	LC13 0.0-0.1	LC16 0.0-0.1
PARAMETER	UOM	LOR	SOIL - 1/9/2021 SE223496.010	SOIL - 1/9/2021 SE223496.011	SOIL - 1/9/2021 SE223496.012	SOIL - 2/9/2021 SE223496.013	SOIL - 2/9/2021 SE223496.016
Arochlor 1016	mg/kg	0.2	-	-	-	-	-
Arochlor 1221	mg/kg	0.2	-	-	-	-	-
Arochlor 1232	mg/kg	0.2	-	-	-	-	-
Arochlor 1242	mg/kg	0.2	-	-	-	-	-
Arochlor 1248	mg/kg	0.2	-	-	-	-	-
Arochlor 1254	mg/kg	0.2	-	-	-	-	-
Arochlor 1260	mg/kg	0.2	-	-	-	-	-
Arochlor 1262	mg/kg	0.2	-	-	-	-	-
Arochlor 1268	mg/kg	0.2	-	-	-	-	-
Total PCBs (Arochlors)	mg/kg	1	-	-	-	-	-

			Hole 0.0-0.1	SP2
			SOIL	SOIL
		1.05	2/9/2021	2/9/2021
PARAMETER	UOM	LOR	SE223496.019	SE223496.021
Arochlor 1016	mg/kg	0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1

Pesticides / Herbicides in Soils by LC-MS/MS MA-1569.SL.01 [MA1569] Tested: 20/9/2021

			LC10 0.0-0.1	LC11 0.0-0.1	LC12 0.0-0.1	LC13 0.0-0.1	LC16 0.0-0.1
			001	001	001		001
			SOIL	SOIL	SOIL	SOIL	SOIL
			1/9/2021	1/9/2021	1/9/2021	2/9/2021	2/9/2021
PARAMETER	UOM	LOR	SE223496.010	SE223496.011	SE223496.012	SE223496.013	SE223496.016
4-Chlorophenocy acetic acid (4-CPA)*	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-D [(2,4-Dichlorophenoxy) acetic acid]*	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2,4-DB*	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,6-D*	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromoxynil*	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Clopyralid*	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dicamba*	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dichloroprop / Dichlorprop-P*	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dinoseb*	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluroxypyr*	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
loxynil*	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
mecoprop*	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
MCPA*	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
MCPB*	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Picloram*	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Triclopyr*	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2,4,5-T*	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2,4,5-TP*	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,6-Trichlorophenoxy acetic acid*	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5

SE223496 R0

Triazines in Soil [AN420] Tested: 14/9/2021

			LC10 0.0-0.1	LC11 0.0-0.1	LC12 0.0-0.1	LC13 0.0-0.1	LC16 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			1/9/2021	1/9/2021	1/9/2021	2/9/2021	2/9/2021
PARAMETER	UOM	LOR	SE223496.010	SE223496.011	SE223496.012	SE223496.013	SE223496.016
Simazine	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Atrazine	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Propazine	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Terbuthylazine	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Metribuzin	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Prometryn	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Terbutryn	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cyanazine	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexazinone	mg/kg	1	<1	<1	<1	<1	<1

SE223496 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 16/9/2021

			LC1 0.0-0.1	LC2 0.0-0.1	LC3 0.2-0.3	LC4 0.0-0.1	LC5 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			1/9/2021	1/9/2021	1/9/2021	1/9/2021	1/9/2021
PARAMETER	UOM	LOR	SE223496.001	SE223496.002	SE223496.003	SE223496.004	SE223496.005
Arsenic, As	mg/kg	1	3	3	7	6	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	13	30	6.6	6.8	15
Copper, Cu	mg/kg	0.5	6.2	4.1	1.2	2.2	2.3
Lead, Pb	mg/kg	1	13	11	16	12	14
Nickel, Ni	mg/kg	0.5	4.5	3.3	1.2	1.3	1.8
Zinc, Zn	mg/kg	2	24	7.7	12	8.3	11

			1000004	1070004		1000004	10100004
			LC6 0.0-0.1	LC7 0.0-0.1	LC8 0.25-0.35	LC9 0.0-0.1	LC10 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			1/9/2021	1/9/2021	1/9/2021	1/9/2021	1/9/2021
PARAMETER	UOM	LOR	SE223496.006	SE223496.007	SE223496.008	SE223496.009	SE223496.010
Arsenic, As	mg/kg	1	4	4	3	2	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	5.4	3.2	7.2	7.9	19
Copper, Cu	mg/kg	0.5	3.7	1.5	3.3	3.7	5.9
Lead, Pb	mg/kg	1	13	12	12	11	9
Nickel, Ni	mg/kg	0.5	2.6	1.5	2.0	2.1	3.5
Zinc, Zn	mg/kg	2	30	13	8.8	7.3	11

			LC11 0.0-0.1	LC12 0.0-0.1	LC13 0.0-0.1	LC14 0.0-0.1	LC15 0.0-0.1
			001	201	001	001	001
			SUIL	SUIL	SUIL	SUIL	SUIL
			- 1/9/2021	- 1/9/2021	- 2/9/2021	2/9/2021	- 2/9/2021
PARAMETER	UOM	LOR	SE223496.011	SE223496.012	SE223496.013	SE223496.014	SE223496.015
Arsenic, As	mg/kg	1	3	3	7	6	5
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	38	25	19	21	19
Copper, Cu	mg/kg	0.5	7.2	6.2	12	13	12
Lead, Pb	mg/kg	1	11	9	17	20	16
Nickel, Ni	mg/kg	0.5	4.5	4.1	19	25	21
Zinc, Zn	mg/kg	2	15	12	68	90	73

			LC16 0.0-0.1	LC17 0.0-0.1	LC18 0.0-0.1	Hole 0.0-0.1	QC1
			SOII	SOIL	SOIL	SOIL	SOII
			-	-	-	-	-
			2/9/2021	2/9/2021	2/9/2021	2/9/2021	1/9/2021
PARAMETER	UOM	LOR	SE223496.016	SE223496.017	SE223496.018	SE223496.019	SE223496.020
Arsenic, As	mg/kg	1	4	4	5	3	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	34	22	32	14	21
Copper, Cu	mg/kg	0.5	8.2	7.3	3.5	3.7	3.9
Lead, Pb	mg/kg	1	16	23	16	13	14
Nickel, Ni	mg/kg	0.5	9.0	6.2	2.7	2.2	2.5
Zinc, Zn	mg/kg	2	26	32	10	110	8.0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 16/9/2021 (continued)

			SP2
			SOIL
DADAMETED	LIOM		- 2/9/2021
FARAMETER	UCIW	LOK	36223490.021
Arsenic, As	mg/kg	1	4
Cadmium, Cd	mg/kg	0.3	<0.3
Chromium, Cr	mg/kg	0.5	11
Copper, Cu	mg/kg	0.5	6.8
Lead, Pb	mg/kg	1	17
Nickel, Ni	mg/kg	0.5	6.7
Zinc, Zn	mg/kg	2	28

SE223496 R0

Mercury in Soil [AN312] Tested: 16/9/2021

			I C1 0.0-0.1	I C2 0.0-0.1	I C3 0.2-0.3	I C4 0.0-0.1	LC5 0.0-0.1
			SOIL	SOIL	SOIL	sou	SOIL
			U SOIL	SOIL	SOIL	U SOIL	OOIL
			1/9/2021	1/9/2021	1/9/2021	1/9/2021	1/9/2021
				110/2021		110/2021	
PARAMETER	UOM	LOR	SE223496.001	SE223496.002	SE223496.003	SE223496.004	SE223496.005
Marauni		0.05	<0.0E	<0.0E	<0.0E	<0.0E	<0.0F
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			LC6 0.0-0.1	LC7 0.0-0.1	LC8 0.25-0.35	LC9 0.0-0.1	LC10 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			1/9/2021	1/9/2021	1/9/2021	1/9/2021	1/9/2021
PARAMETER	UOM	LOR	SE223496.006	SE223496.007	SE223496.008	SE223496.009	SE223496.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			LC11 0.0-0.1	LC12 0.0-0.1	LC13 0.0-0.1	LC14 0.0-0.1	LC15 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			1/9/2021	1/9/2021	2/9/2021	2/9/2021	2/9/2021
PARAMETER	UOM	LOR	SE223496.011	SE223496.012	SE223496.013	SE223496.014	SE223496.015
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			LC16 0.0-0.1	LC17 0.0-0.1	LC18 0.0-0.1	Hole 0.0-0.1	QC1
			SOIL	SOIL	SOIL	SOIL	SOIL
			2/9/2021	2/9/2021	2/9/2021	2/9/2021	1/9/2021
PARAMETER	UOM	LOR	SE223496.016	SE223496.017	SE223496.018	SE223496.019	SE223496.020
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			SP2
			SOIL
			2/9/2021
PARAMETER	UOM	LOR	SE223496.021
Mercury	mg/kg	0.05	<0.05

SE223496 R0

Moisture Content [AN002] Tested: 15/9/2021

			LC1 0.0-0.1	LC2 0.0-0.1	LC3 0.2-0.3	LC4 0.0-0.1	LC5 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			1/9/2021	1/9/2021	1/9/2021	1/9/2021	1/9/2021
PARAMETER	UOM	LOR	SE223496.001	SE223496.002	SE223496.003	SE223496.004	SE223496.005
% Moisture	%w/w	1	25.2	22.2	17.4	28.5	24.2

			LC6 0.0-0.1	LC7 0.0-0.1	LC8 0.25-0.35	LC9 0.0-0.1	LC10 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			1/9/2021	1/9/2021	1/9/2021	1/9/2021	1/9/2021
PARAMETER	UOM	LOR	SE223496.006	SE223496.007	SE223496.008	SE223496.009	SE223496.010
% Moisture	%w/w	1	26.7	22.8	19.7	23.2	23.5

			LC11 0.0-0.1	LC12 0.0-0.1	LC13 0.0-0.1	LC14 0.0-0.1	LC15 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			1/9/2021	1/9/2021	2/9/2021	2/9/2021	2/9/2021
PARAMETER	UOM	LOR	SE223496.011	SE223496.012	SE223496.013	SE223496.014	SE223496.015
% Moisture	%w/w	1	25.3	24.9	17.3	19.0	21.9

			LC16 0.0-0.1	LC17 0.0-0.1	LC18 0.0-0.1	Hole 0.0-0.1	QC1
			SOIL	SOIL	SOIL	SOIL	SOIL
			2/9/2021	2/9/2021	2/9/2021	2/9/2021	1/9/2021
PARAMETER	UOM	LOR	SE223496.016	SE223496.017	SE223496.018	SE223496.019	SE223496.020
% Moisture	%w/w	1	22.7	26.4	17.6	15.9	20.7

			SP2
			SOIL
			2/9/2021
PARAMETER	UOM	LOR	SE223496.021
% Moisture	%w/w	1	8.7

Fibre Identification in soil [AN602] Tested: 16/9/2021

			Hole 0.0-0.1	SP2
			SOIL	SOIL
			2/9/2021	2/9/2021
PARAMETER	UOM	LOR	SE223496.019	SE223496.021
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC`s are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where
	AN602 section 4.5 of this method has been followed, and if-
	(a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):
	(b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in
	asbestos-containing materials are found to be less than 0.1g/kg: and
	(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible
	under stereo-microscope viewing conditions.
MA-1569	This method is intended for the analysis of a diverse range of pesticides and herbicides by Liquid
	Chromatography using a Tandem Mass Spectrometry detector (LC-MS/MS). Due to the diverse nature of the
	analytes covered in this method each analyte requires its own analytical acquisition method thus the sample is
	run multiple times according to the analyte list requested.
	Soil and solid samples are extracted with ACN and extracts are filtered then directly injected onto LC-MS/MS
	using selective ion monitoring.

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	analysis.		Reporting.
***	Indicates that both * and ** apply.		Sample listed, but not received.		

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity: a. 1 Bg is equivalent to 27 pCi
 - a. I by is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAILS	
Contact Client Address	Chris Gunton LANTERRA CONSULTING PTY LTD PO BOX 3626 WESTON ACT 2611	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	0432 324 348	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Chris.Gunton@lanterra.com.au	Email	au.environmental.sydney@sgs.com
Project	P21091 - Cusack PI Yass	SGS Reference	SE223496 R0
Order Number	P21091	Date Received	10 Sep 2021
Samples	21	Date Reported	20 Sep 2021

COMMENTS .

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Analysis Date	VOC's in Soil	2 items
	Volatile Petroleum Hydrocarbons in Soil	2 items
Duplicate	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	1 item
	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	3 items
Matrix Spike	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	2 items
	VOC's in Soil	1 item

Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	SGS	Sample cooling method	Ice Bricks	
Samples received in correct containers	Yes	Sample counts by matrix	21 Soil	
Date documentation received	10/9/2021	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	Yes	
Sample temperature upon receipt	10.0°C	Sufficient sample for analysis	Yes	
Turnaround time requested	Standard			

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

Australia

Australia

Member of the SGS Group

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Fibre Identification In soil Method: ME-(AU)-[ENV]AN602									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analvsis Due	Analysed	
Hole 0.0-0.1	SE223496.019	LB232787	02 Sep 2021	10 Sep 2021	02 Sep 2022	16 Sep 2021	02 Sep 2022	17 Sep 2021	
SP2	SE223496.021	LB232787	02 Sep 2021	10 Sep 2021	02 Sep 2022	16 Sep 2021	02 Sep 2022	17 Sep 2021	
Moroupy in Soil							Mathod: N		
Mercury In Soli							Meulou. N		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
LC1 0.0-0.1	SE223496.001	LB232817	01 Sep 2021	10 Sep 2021	29 Sep 2021	16 Sep 2021	29 Sep 2021	17 Sep 2021	
LC2 0.0-0.1	SE223496.002	LB232817	01 Sep 2021	10 Sep 2021	29 Sep 2021	16 Sep 2021	29 Sep 2021	17 Sep 2021	
LC3 0.2-0.3	SE223496.003	LB232817	01 Sep 2021	10 Sep 2021	29 Sep 2021	16 Sep 2021	29 Sep 2021	17 Sep 2021	
LC4 0.0-0.1	SE223496.004	LB232817	01 Sep 2021	10 Sep 2021	29 Sep 2021	16 Sep 2021	29 Sep 2021	17 Sep 2021	
LC5 0.0-0.1	SE223496.005	LB232817	01 Sep 2021	10 Sep 2021	29 Sep 2021	16 Sep 2021	29 Sep 2021	17 Sep 2021	
LC6 0.0-0.1	SE223496.006	LB232817	01 Sep 2021	10 Sep 2021	29 Sep 2021	16 Sep 2021	29 Sep 2021	17 Sep 2021	
LC7 0.0-0.1	SE223496.007	LB232817	01 Sep 2021	10 Sep 2021	29 Sep 2021	16 Sep 2021	29 Sep 2021	17 Sep 2021	
LC8 0.25-0.35	SE223496.008	LB232817	01 Sep 2021	10 Sep 2021	29 Sep 2021	16 Sep 2021	29 Sep 2021	17 Sep 2021	
LC9 0.0-0.1	SE223496.009	LB232817	01 Sep 2021	10 Sep 2021	29 Sep 2021	16 Sep 2021	29 Sep 2021	17 Sep 2021	
LC10 0.0-0.1	SE223496.010	LB232817	01 Sep 2021	10 Sep 2021	29 Sep 2021	16 Sep 2021	29 Sep 2021	17 Sep 2021	
LC11 0.0-0.1	SE223496.011	LB232817	01 Sep 2021	10 Sep 2021	29 Sep 2021	16 Sep 2021	29 Sep 2021	17 Sep 2021	
LC12 0.0-0.1	SE223496.012	LB232817	01 Sep 2021	10 Sep 2021	29 Sep 2021	16 Sep 2021	29 Sep 2021	17 Sep 2021	
LC13 0.0-0.1	SE223496.013	LB232817	02 Sep 2021	10 Sep 2021	30 Sep 2021	16 Sep 2021	30 Sep 2021	17 Sep 2021	
LC14 0.0-0.1	SE223496.014	LB232817	02 Sep 2021	10 Sep 2021	30 Sep 2021	16 Sep 2021	30 Sep 2021	17 Sep 2021	
LC15 0.0-0.1	SE223496.015	LB232817	02 Sep 2021	10 Sep 2021	30 Sep 2021	16 Sep 2021	30 Sep 2021	17 Sep 2021	
LC16 0.0-0.1	SE223496.016	LB232817	02 Sep 2021	10 Sep 2021	30 Sep 2021	16 Sep 2021	30 Sep 2021	17 Sep 2021	
LC17 0.0-0.1	SE223496.017	LB232817	02 Sep 2021	10 Sep 2021	30 Sep 2021	16 Sep 2021	30 Sep 2021	17 Sep 2021	
LC18 0.0-0.1	SE223496.018	LB232817	02 Sep 2021	10 Sep 2021	30 Sep 2021	16 Sep 2021	30 Sep 2021	17 Sep 2021	
Hole 0.0-0.1	SE223496.019	LB232817	02 Sep 2021	10 Sep 2021	30 Sep 2021	16 Sep 2021	30 Sep 2021	17 Sep 2021	
QC1	SE223496.020	LB232819	01 Sep 2021	10 Sep 2021	29 Sep 2021	16 Sep 2021	29 Sep 2021	17 Sep 2021	
SP2	SE223496.021	LB232819	02 Sep 2021	10 Sep 2021	30 Sep 2021	16 Sep 2021	30 Sep 2021	17 Sep 2021	
Moisture Content							Method: N	IE-(AU)-[ENV]AN002	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
LC1 0.0-0.1	SE223496.001	LB232766	01 Sep 2021	10 Sep 2021	15 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC2 0.0-0.1	SE223496.002	LB232766	01 Sep 2021	10 Sep 2021	15 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC3 0.2-0.3	SE223496.003	LB232766	01 Sep 2021	10 Sep 2021	15 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC4 0.0-0.1	SE223496.004	LB232766	01 Sep 2021	10 Sep 2021	15 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC5 0.0-0.1	SE223496.005	LB232766	01 Sep 2021	10 Sep 2021	15 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC6 0.0-0.1	SE223496.006	LB232766	01 Sep 2021	10 Sep 2021	15 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC7 0.0-0.1	SE223496.007	LB232766	01 Sep 2021	10 Sep 2021	15 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC8 0.25-0.35	SE223496.008	LB232766	01 Sep 2021	10 Sep 2021	15 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC9 0.0-0.1	SE223496.009	LB232766	01 Sep 2021	10 Sep 2021	15 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC10 0.0-0.1	SE223496.010	LB232766	01 Sep 2021	10 Sep 2021	15 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC11 0.0-0.1	SE223496.011	LB232766	01 Sep 2021	10 Sep 2021	15 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC12 0.0-0.1	SE223496.012	LB232766	01 Sep 2021	10 Sep 2021	15 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC13 0.0-0.1	SE223496.013	LB232766	02 Sep 2021	10 Sep 2021	16 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC14 0.0-0.1	SE223496.014	LB232766	02 Sep 2021	10 Sep 2021	16 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC15 0.0-0.1	SE223496.015	LB232766	02 Sep 2021	10 Sep 2021	16 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC16 0.0-0.1	SE223496.016	LB232766	02 Sep 2021	10 Sep 2021	16 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC17 0.0-0.1	SE223496.017	LB232766	02 Sep 2021	10 Sep 2021	16 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
LC18 0.0-0.1	SE223496.018	LB232766	02 Sep 2021	10 Sep 2021	16 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
Hole 0.0-0.1	SE223496.019	LB232766	02 Sep 2021	10 Sep 2021	16 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
QC1	SE223496.020	LB232766	01 Sep 2021	10 Sep 2021	15 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
SP2	SE223496.021	LB232766	02 Sep 2021	10 Sep 2021	16 Sep 2021	15 Sep 2021	20 Sep 2021	17 Sep 2021	
OC Pesticides in Soil							Method: N	IE-(AU)-[ENV]AN420	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
LC10 0.0-0.1	SE223496.010	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	17 Sep 2021	
LC11 0.0-0.1	SE223496.011	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	17 Sep 2021	
LC12 0.0-0.1	SE223496.012	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	17 Sep 2021	
LC13 0.0-0.1	SE223496.013	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	17 Sep 2021	
LC16 0.0-0.1	SE223496.016	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	17 Sep 2021	
Hole 0.0-0.1	SE223496.019	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	17 Sep 2021	
SP2	SE223496.021	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	17 Sep 2021	

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

OP Pesticides in Soll Method: ME-(AU)-[ENV]AN42(Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
LC10 0.0-0.1	SE223496.010	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
LC11 0.0-0.1	SE223496.011	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
LC12 0.0-0.1	SE223496.012	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
LC13 0.0-0.1	SE223496.013	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
LC16 0.0-0.1	SE223496.016	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
Hole 0.0-0.1	SE223496.019	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
SP2	SE223496.021	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
PAH (Polynuclear Aromatic	Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
LC10 0.0-0.1	SE223496.010	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
LC11 0.0-0.1	SE223496.011	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
LC12 0.0-0.1	SE223496.012	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
LC13 0.0-0.1	SE223496.013	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
LC16 0.0-0.1	SE223496.016	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
Hole 0.0-0.1	SE223496.019	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
SP2	SE223496.021	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
PCBs in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
LC10 0.0-0.1	SE223496.010	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	17 Sep 2021
LC11 0.0-0.1	SE223496.011	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	17 Sep 2021
LC12 0.0-0.1	SE223496.012	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	17 Sep 2021
LC13 0.0-0.1	SE223496.013	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	17 Sep 2021
LC16 0.0-0.1	SE223496.016	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	17 Sep 2021
Hole 0.0-0.1	SE223496.019	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	17 Sep 2021
SP2	SE223496.021	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	17 Sep 2021
Total Recoverable Element	s in Soil/Waste Solids/Mat	terials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
LC1 0.0-0.1	SE223496.001	LB232812	01 Sep 2021	10 Sep 2021	28 Feb 2022	16 Sep 2021	28 Feb 2022	17 Sep 2021
LC2 0.0-0.1	SE223496.002	LB232812	01 Sep 2021	10 Sep 2021	28 Feb 2022	16 Sep 2021	28 Feb 2022	17 Sep 2021
LC3 0.2-0.3	SE223496.003	LB232812	01 Sep 2021	10 Sep 2021	28 Feb 2022	16 Sep 2021	28 Feb 2022	17 Sep 2021
LC4 0.0-0.1	SE223496.004	LB232812	01 Sep 2021	10 Sep 2021	28 Feb 2022	16 Sep 2021	28 Feb 2022	17 Sep 2021
LC5 0.0-0.1	SE223496.005	LB232812	01 Sep 2021	10 Sep 2021	28 Feb 2022	16 Sep 2021	28 Feb 2022	17 Sep 2021
LC6 0.0-0.1	SE223496.006	LB232812	01 Sep 2021	10 Sep 2021	28 Feb 2022	16 Sep 2021	28 Feb 2022	17 Sep 2021
LC7 0.0-0.1	SE223496.007	LB232812	01 Sep 2021	10 Sep 2021	28 Feb 2022	16 Sep 2021	28 Feb 2022	17 Sep 2021
LC8 0.25-0.35	SE223496.008	LB232812	01 Sep 2021	10 Sep 2021	28 Feb 2022	16 Sep 2021	28 Feb 2022	17 Sep 2021
LC9 0.0-0.1	SE223496.009	LB232812	01 Sep 2021	10 Sep 2021	28 Feb 2022	16 Sep 2021	28 Feb 2022	17 Sep 2021
LC10 0.0-0.1	SE223496.010	LB232812	01 Sep 2021	10 Sep 2021	28 Feb 2022	16 Sep 2021	28 Feb 2022	17 Sep 2021
LC11 0.0-0.1	SE223496.011	LB232812	01 Sep 2021	10 Sep 2021	28 Feb 2022	16 Sep 2021	28 Feb 2022	17 Sep 2021
LC12 0.0-0.1	SE223496.012	LB232812	01 Sep 2021	10 Sep 2021	28 Feb 2022	16 Sep 2021	28 Feb 2022	17 Sep 2021
LC13 0.0-0.1	SE223496.013	LD232012	02 Sep 2021	10 Sep 2021	01 Mar 2022	16 Sep 2021	01 Mar 2022	17 Sep 2021
LC15 0 0-0 1	SE223496.015	1 8232812	02 Sep 2021	10 Sep 2021	01 Mar 2022	16 Sep 2021	01 Mar 2022	17 Sep 2021
LC16.0.0-0.1	SE223496.016	1 8232812	02 Sep 2021	10 Sep 2021	01 Mar 2022	16 Sep 2021	01 Mar 2022	17 Sep 2021
LC17 0.0-0.1	SE223496.017	LB232812	02 Sep 2021	10 Sep 2021	01 Mar 2022	16 Sep 2021	01 Mar 2022	17 Sep 2021
LC18 0.0-0.1	SE223496.018	LB232812	02 Sep 2021	10 Sep 2021	01 Mar 2022	16 Sep 2021	01 Mar 2022	17 Sep 2021
Hole 0.0-0.1	SE223496.019	LB232812	02 Sep 2021	10 Sep 2021	01 Mar 2022	16 Sep 2021	01 Mar 2022	17 Sep 2021
QC1	SE223496.020	LB232813	01 Sep 2021	10 Sep 2021	28 Feb 2022	16 Sep 2021	28 Feb 2022	17 Sep 2021
SP2	SE223496.021	LB232813	02 Sep 2021	10 Sep 2021	01 Mar 2022	16 Sep 2021	01 Mar 2022	17 Sep 2021
TRH (Total Recoverable Hv	drocarbons) in Soil			· · ·			Method: I	ME-(AU)-[ENVIAN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
LC10 0.0-0.1	SE223496.010	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
LC11 0.0-0.1	SE223496.011	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
LC12 0.0-0.1	SE223496.012	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
LC13 0.0-0.1	SE223496.013	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
LC16 0.0-0.1	SE223496.016	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
Hole 0.0-0.1	SE223496.019	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021
SP2	SE223496.021	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	20 Sep 2021

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Triazines in Soil

Triazines in Soli Method: ME-(AU)-[ENV]							ME-(AU)-[ENV]AN420	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
LC10 0.0-0.1	SE223496.010	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	18 Sep 2021
LC11 0.0-0.1	SE223496.011	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	18 Sep 2021
LC12 0.0-0.1	SE223496.012	LB232660	01 Sep 2021	10 Sep 2021	15 Sep 2021	14 Sep 2021	24 Oct 2021	18 Sep 2021
LC13 0.0-0.1	SE223496.013	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	18 Sep 2021
LC16 0.0-0.1	SE223496.016	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	18 Sep 2021
Hole 0.0-0.1	SE223496.019	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	18 Sep 2021
SP2	SE223496.021	LB232660	02 Sep 2021	10 Sep 2021	16 Sep 2021	14 Sep 2021	24 Oct 2021	18 Sep 2021
VOC's in Soil							Method:	ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Hole 0.0-0.1	SE223496.019	LB232762	02 Sep 2021	10 Sep 2021	16 Sep 2021	15 Sep 2021	16 Sep 2021	17 Sep 2021†
SP2	SE223496.021	LB232762	02 Sep 2021	10 Sep 2021	16 Sep 2021	15 Sep 2021	16 Sep 2021	17 Sep 2021†
Volatile Petroleum Hydroca	arbons in Soil						Method:	ME-(AU)-[ENV]AN433

Volatile Petroleum Hydrocarbons in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Hole 0.0-0.1	SE223496.019	LB232762	02 Sep 2021	10 Sep 2021	16 Sep 2021	15 Sep 2021	16 Sep 2021	17 Sep 2021†
SP2	SE223496.021	LB232762	02 Sep 2021	10 Sep 2021	16 Sep 2021	15 Sep 2021	16 Sep 2021	17 Sep 2021†

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	Hole 0.0-0.1	SE223496.019	%	60 - 130%	94
	SP2	SE223496.021	%	60 - 130%	100
OP Pesticides in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	Hole 0.0-0.1	SE223496.019	%	60 - 130%	88
	SP2	SE223496.021	%	60 - 130%	82
d14-p-terphenyl (Surrogate)	Hole 0.0-0.1	SE223496.019	%	60 - 130%	98
	SP2	SE223496.021	%	60 - 130%	98
PAH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	Hole 0.0-0.1	SE223496.019	%	70 - 130%	88
	SP2	SE223496.021	%	70 - 130%	82
d14-p-terphenyl (Surrogate)	Hole 0.0-0.1	SE223496.019	%	70 - 130%	98
	SP2	SE223496.021	%	70 - 130%	98
d5-nitrobenzene (Surrogate)	Hole 0.0-0.1	SE223496.019	%	70 - 130%	78
	SP2	SE223496.021	%	70 - 130%	74
PCBs in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	Hole 0.0-0.1	SE223496.019	%	60 - 130%	94
	SP2	SE223496.021	%	60 - 130%	100
Triazines in Soil				Method: M	E-(AU)-[ENV]AN420
Triazines in Soil Parameter	Sample Name	Sample Number	Units	Method: Mi Criteria	E-(AU)-[ENV]AN420 Recovery %
Triazines in Soil Parameter d14-p-terphenyl (Surrogate)	Sample Name LC10 0.0-0.1	Sample Number SE223496.010	Units %	Method: M Criteria 70 - 130%	<mark>E-(AU)-[ENV]AN420</mark> Recovery % 74
Triazines in Soil Parameter d14-p-terphenyl (Surrogate)	Sample Name LC10 0.0-0.1 LC11 0.0-0.1	Sample Number SE223496.010 SE223496.011	Units % %	Method: Mi Criteria 70 - 130% 70 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76
Triazines in Soil Parameter d14-p-terphenyl (Surrogate)	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1	Sample Number SE223496.010 SE223496.011 SE223496.012	Units % %	Method: Mi Criteria 70 - 130% 70 - 130% 70 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76
Triazines in Soil Parameter d14-p-terphenyl (Surrogate)	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013	Units % % %	Method: Mi Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76 76 74
Triazines in Soil Parameter d14-p-terphenyl (Surrogate)	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016	Units % % % %	Method: MI Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76 76 74 74 74
Triazines in Soil Parameter d14-p-terphenyl (Surrogate) VOC's in Soil	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016	Units % % % %	Method: MI Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% Method: MI	E-(AU)-[ENV]AN420 Recovery % 74 76 76 76 74 74 E-(AU)-[ENV]AN433
Triazines in Soil Parameter d14-p-terphenyl (Surrogate) VOC's in Soil Parameter	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1 Sample Name	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016 Sample Number	Units % % % % Units	Method: MI Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% Criteria Criteria	E-(AU)-[ENV]AN420 Recovery % 74 76 76 74 74 74 E-(AU)-[ENV]AN433 Recovery %
Triazines in Soil Parameter d14-p-terphenyl (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate)	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1 Sample Name Hole 0.0-0.1	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016 Sample Number SE223496.019	Units % % % % Units %	Method: MI Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% Criteria 60 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76 74 74 74 E-(AU)-[ENV]AN433 Recovery % 73
Triazines in Soil Parameter d14-p-terphenyl (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate)	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1 Sample Name Hole 0.0-0.1 SP2	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016 Sample Number SE223496.019 SE223496.021	Units % % % % % Units %	Method: MI Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% Criteria 60 - 130% 60 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76 74 74 74 E-(AU)-[ENV]AN433 Recovery % 73 66
Triazines in Soil Parameter d14-p-terphenyl (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1 Sample Name Hole 0.0-0.1 SP2 Hole 0.0-0.1	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016 Sample Number SE223496.019 SE223496.021 SE223496.019	Units % % % % % Units % %	Method: MI Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% Method: MI Criteria 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76 74 74 E-(AU)-[ENV]AN433 Recovery % 73 66 96
Triazines in Soil Parameter d14-p-terphenyl (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1 Sample Name Hole 0.0-0.1 SP2 Hole 0.0-0.1	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016 Sample Number SE223496.019 SE223496.021 SE223496.021 SE223496.021	Units % % % % % Units % % % %	Method: MI Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% Method: MI Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76 74 74 E-(AU)-[ENV]AN433 Recovery % 73 66 96 88 57
Triazines in Soil Parameter d14-p-terphenyl (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1 Sample Name Hole 0.0-0.1 SP2 Hole 0.0-0.1 SP2 Hole 0.0-0.1	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016 Sample Number SE223496.019 SE223496.019 SE223496.019 SE223496.019 SE223496.019 SE223496.019 SE223496.019 SE223496.021 SE223496.021 SE223496.021 SE223496.021 SE223496.021	Units % % % % % Units % % % % %	Method: MI Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% Method: MI Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76 74 74 E-(AU)-[ENV]AN433 Recovery % 73 66 96 88 97
Triazines in Soil Parameter d14-p-terphenyl (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1 Sample Name Hole 0.0-0.1 SP2	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016 Sample Number SE223496.019 SE223496.021 SE223496.021 SE223496.019 SE223496.021 SE223496.021 SE223496.021 SE223496.021 SE223496.021	Units % % % % % Units % % % % %	Method: MI Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 00 - 130% Ocriteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76 74 74 E-(AU)-[ENV]AN433 Recovery % 73 66 96 88 97 90
Triazines in Soil Parameter d14-p-terphenyl (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Volatile Petroleum Hydrocarbons in Soil	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1 Sample Name Hole 0.0-0.1 SP2 Hole 0.0-0.1 SP2 Hole 0.0-0.1 SP2 Hole 0.0-0.1 SP2 Hole 0.0-0.1	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016 Sample Number SE223496.019 SE223496.021 SE223496.021 SE223496.021 SE223496.021 SE223496.021 SE223496.021 SE223496.021 SE223496.021 SE223496.021	Units % % % % % Units % % % %	Method: MI Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% Octation Method: MI Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76 74 74 E-(AU)-[ENV]AN433 Recovery % 73 66 96 88 97 90 E-(AU)-[ENV]AN433
Triazines in Soil Parameter d14-p-terphenyl (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Volatile Petroleum Hydrocarbons in Soil Parameter	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1 Sample Name Hole 0.0-0.1 SP2 Hole 0.0-0.1 SP2 Hole 0.0-0.1 SP2 Sample Name	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016 Sample Number SE223496.019 SE223496.019 SE223496.019 SE223496.021	Units % % % % % Units % % % % %	Method: MI Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% Ocriteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76 74 74 E-(AU)-[ENV]AN433 Recovery % 73 66 96 88 97 90 E-(AU)-[ENV]AN433 Recovery %
Triazines in Soil Parameter d14-p-terphenyl (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate)	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1 Sample Name Hole 0.0-0.1 SP2	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016 Sample Number SE223496.019 SE223496.019 SE223496.019 SE223496.021	Units % % % % % Units % % % % % Units %	Method: MI Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% Oc 130% Oc - 130% Oc - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% Criteria 60 - 130% Criteria 60 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76 74 74 E-(AU)-[ENV]AN433 Recovery % 73 66 96 88 97 90 E-(AU)-[ENV]AN433 Recovery % 73
Triazines in Soil Parameter d14-p-terphenyl (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate)	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1 Sample Name Hole 0.0-0.1 SP2 Sample Name Hole 0.0-0.1 SP2	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016 Sample Number SE223496.019 SE223496.019 SE223496.021 SE223496.021 SE223496.019 SE223496.021 SE223496.021 SE223496.019 SE223496.021 SE223496.021 SE223496.021 SE223496.021 SE223496.021	Units % % % % % % % % % % % Units % %	Method: MI Criteria 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 00 - 130% Ocriteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76 74 74 E-(AU)-[ENV]AN433 Recovery % 73 66 96 88 97 90 E-(AU)-[ENV]AN433 Recovery % 73 66 57 66
Triazines in Soil Parameter d14-p-terphenyl (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Volatile Petroleum Hydrocarbons in Soll Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1 Sample Name Hole 0.0-0.1 SP2	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016 Sample Number SE223496.019 SE223496.019 SE223496.021 SE223496.021	Units % % % % % % % % % % % % % % % % %	Method: MI 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 00 - 130% 00 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76 74 74 E-(AU)-[ENV]AN433 Recovery % 73 66 96 88 97 90 E-(AU)-[ENV]AN433 Recovery % 73 66 96 96 96 96
Triazines in Soil Parameter d14-p-terphenyl (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Volatile Petroleum Hydrocarbons in Soll Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1 Sample Name Hole 0.0-0.1 SP2	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016 Sample Number SE223496.019 SE223496.019 SE223496.019 SE223496.021 SE223496.021 SE223496.019 SE223496.021	Units % % % % % % % % % % % % % % % % %	Method: MI 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 00 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76 74 74 E-(AU)-[ENV]AN433 Recovery % 73 66 96 88 97 90 E-(AU)-[ENV]AN433 Recovery % 73 66 96 88 97 90
Triazines in Soil Parameter d14-p-terphenyl (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Sample Name LC10 0.0-0.1 LC11 0.0-0.1 LC12 0.0-0.1 LC13 0.0-0.1 LC16 0.0-0.1 Sample Name Hole 0.0-0.1 SP2 Hole 0.0-0.1 SP2	Sample Number SE223496.010 SE223496.011 SE223496.012 SE223496.013 SE223496.016 Sample Number SE223496.019 SE223496.019 SE223496.021	Units % % % % % % % % % % % % % % % % % %	Method: MI 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% Method: MI Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV]AN420 Recovery % 74 76 76 74 74 E-(AU)-[ENV]AN433 Recovery % 73 66 96 88 97 90 E-(AU)-[ENV]AN433 Recovery % 73 66 96 88 97 90

Mercury in Soil

METHOD BLANKS

SE223496 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result
LB232817.001	Mercury	mg/kg	0.05	<0.05
LB232819.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420 LOR Sample Number Units Result Parameter LB232660.001 Hexachlorobenzene (HCB) mg/kg 0.1 <0.1 Alpha BHC mg/kg 0.1 <0.1 Lindane 0.1 <0.1 mg/kg Heptachlor mg/kg 0.1 <0.1 <0.1 Aldrin 0.1 mg/kg Beta BHC mg/kg 0.1 < 0.1 Delta BHC mg/kg 0.1 <0.1 Heptachlor epoxide 0.1 <0.1 mg/kg Alpha Endosulfan 0.2 <0.2 mg/kg Gamma Chlordane mg/kg 0.1 < 0.1 Alpha Chlordane 0.1 <0.1 mg/kg p,p'-DDE 0.1 <0.1 mg/kg Dieldrin mg/kg 0.2 < 0.2 Endrin 0.2 <0.2 mg/kg Beta Endosulfan 0.2 <0.2 mg/kg p,p'-DDD mg/kg 0.1 <0.1 p,p'-DDT 0.1 <0.1 mg/kg Endosulfan sulphate mg/kg 0.1 < 0.1 Endrin Aldehyde mg/kg 0.1 <0.1 Methoxychlor <0.1 0.1 mg/kg Endrin Ketone 0.1 < 0.1 mg/kg Isodrin mg/kg 0.1 <0.1 Mirex 0.1 <0.1 mg/kg Tetrachloro-m-xylene (TCMX) (Surrogate) Surrogates 88 % **OP Pesticides in Soil** Method: ME-(AU)-[ENV]AN420 Sample Number Result Parameter LB232660.001 Dichlorvos 0.5 <0.5 mg/kg Dimethoate mg/kg 0.5 < 0.5 Diazinon (Dimpylate) mg/kg 0.5 <0.5 <0.2 Fenitrothion 0.2 mg/kg Malathion 0.2 < 0.2 mg/kg Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 <0.2

	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	76
	d14-p-terphenyl (Surrogate)	%	-	88
DALL (Debauselese Assuration budge and analytic Call			14-44-	

FAIT (Folyhucidal Alomatic Hydrocalbons)			Media	00. WE-(A0)-[EIW]AW+20
Sample Number	Parameter	Units	LOR	Result
LB232660.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1

METHOD BLANKS

SE223496 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Arc	matic Hydrocarbons) in Soi	il (continued)		Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB232660.001		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)pervlene	ma/kg	0.1	<0.1
		Total PAH (18)	ma/ka	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	74
	Sunogutos	2-fluorobinhenyl (Surrogate)			76
		d14.n.terohenyl (Surrogate)	0/		
			70		
PCBs in Soil				Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB232660.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	88
Total Recoverable Fle	ements in Soil/Waste Solids	Materials by ICPOES		Method: ME.	(ALI)-IENVIAN040/AN320
			11		(10) [Littly attorion attorio
Sample Number		Parameter	Units	LOR	Result
LB232812.001		Arsenic, As	mg/kg	1	<1
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.5	<0.5
		Copper, Cu	mg/kg	0.5	<0.5
		Nickel, Ni	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Zinc, Zn	mg/kg	2	<2.0
LB232813.001		Arsenic, As	mg/kg	1	<1
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.5	<0.5
		Copper, Cu	mg/kg	0.5	<0.5
		Nickel, Ni	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Zinc, Zn	mg/kg	2	<2.0
TRH (Total Recoveral	ble Hydrocarbons) in Soll			Meth	od: ME-(AU)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result
L B232660 001		TBH C10-C14	ma/ka	20	<20
		TRH C15-C28	ma/ka	45	<45
		TRH C29-C36	ma/ka	45	<45
		TRH 022 000	ma/ka	100	<100
		TRH C10 C36 Total	mg/kg	110	<100
			iiig/kg		<110
Triazines in Soil				Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB232660.001		Simazine	mg/kg	0.5	<0.5
		Atrazine	mg/kg	0.5	<0.5
		Propazine	mg/kg	0.5	<0.5
		Terbuthylazine	mg/kg	0.5	<0.5
		Metribuzin	mg/kg	0.5	<0.5
		Prometryn	mg/kg	0.5	<0.5
		Terbutryn	mg/kg	0.5	<0.5
		Cyanazine	mg/kg	0.5	<0.5
		Hexazinone	mg/kg	1	<1
	Surrogates	d14-p-terphenyl (Surrogate)	 %	-	84
VOC's in Soil				Meth	od: ME-(ALI)-IENV/JAN/433
		D			service for on the service of
Sample Number		Parameter	Linits	TOR	

METHOD BLANKS

SE223496 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB232762.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	89
		d8-toluene (Surrogate)	%	-	89
		Bromofluorobenzene (Surrogate)	%	-	78
	Totals	Total BTEX	mg/kg	0.6	<0.6
Volatile Petroleum Hyd	drocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB232762.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	89

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

% Moisture

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Mercury in Soil

Mercury in Soil	cury in Soil					Method: ME-(AU)-[ENV]AN312			
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %	
SE223439.007	LB232819.014	Mercury	mg/kg	0.05	0.07	<0.05	118	39	
SE223496.010	LB232817.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0	
SE223496.019	LB232817.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0	
SE223496.021	LB232819.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0	
Moisture Content						Meth	od: ME-(AU)-	ENVJAN002	
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %	
SE223496.010	LB232766.011	% Moisture	%w/w	1	23.5	24.6	34	4	
SE223496.020	LB232766.022	% Moisture	%w/w	1	20.7	20.3	35	2	

%w/w

1

8.7

9.5

41

8

LB232766.024

SE223496.021

OC Pesticides in Sc	bil						Meth	od: ME-(AU)-	[ENV]AN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE223496.021	LB232660.024		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	30	3
SE223504.038	LB232660.022		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
L									

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

OC Pesticides in S	oil (continued)						Meth	od: ME-(AU)-	ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE223504.038	LB232660.022		p.p'-DDD	ma/ka	0.1	<0.1	<0.1	200	0
			p.p'-DDT	ma/ka	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Mothewichler	mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg	0.1	<0.1	<0.1	200	0
			Isoarin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.15	30	3
OP Pesticides in Se	oll					_	Meth	od: ME-(AU)-	ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE223496.021	LB232660.027		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	ma/ka	0.2	<0.2	<0.2	200	0
			Malathion		0.2	<0.2	<0.2	200	0
				mg/kg	0.2	<0.2	<0.2	200	0
			Parathion ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
				ma/kg	0.2	<0.2	<0.2	200	
			Biomoprios Eury	ing/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
SE223504.038	LB232660.022		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	ma/ka	0.2	<0.2	<0.2	200	0
			Methidathion	ma/ka	0.5	<0.5	<0.5	200	0
			Ethion	ma/ka	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	ma/ka	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2 fluorohinhenyl (Surrogate)	mg/kg	1.7	0.4	0.4	30	2
		Sunogates	d14 a temberul (Surregate)	mg/kg	-	0.4	0.4	30	2
			d 14-p-terphenyl (Sunogate)	liig/kg	-	0.5	0.5	30	4
PAH (Polynuclear /	Aromatic Hydrocarb	ons) in Soil					Meth	od: ME-(AU)-	(ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE223496.021	LB232660.027		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	ma/ka	0.1	<0.1	<0.1	200	0
			Phenanthrene	ma/ka	0.1	<0.1	<0.1	200	0
			Anthracene	ma/ka	0.1	<0.1	<0.1	200	0
			Fluoranthene	malka	0.1	<0.1	<0.1	200	0
			Pyrene	malka	0.1	-0.1	-0.1	200	0
				mg/kg	0.1	~0.1	-0.1	200	0
			Characterie	mg/kg	0.1	<u.1< td=""><td>×0.1</td><td>200</td><td>0</td></u.1<>	×0.1	200	0
				mg/kg	U.1	<0.1	<0.1	200	U
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
Original Duplicate Parameter SE223504.038 LB23260.022 pr/-0D Endoculfan sulphate Endoculfan sulphate Endoculfan sulphate Endoculfan sulphate Endoculfan sulphate Endoculfan sulphate Endoculfan sulphate Endoculfan sulphate OP Pedicides in Soll Parameter Original Duplicate Starrogates Parameter Starrogates Parameter Starrogates Didelows Outprint Endoculfan sulphate Starrogates Parameter Starrogates Didelows Outprint Chilopyride Starrogates Didelows Distriction Mathidution Edition Mathidution Edition Auropose methyl (Cardinon) Total OP Prestodes* 24uncobjene (Genrogate) Starrogates 24uncobjene (Genrogate) Didelows Didelows Parameter Didelows Starrogates 24uncobjene (Genrogate) Didelowerethyl (Cardinon)	mg/kg	0.1	<0.1	<0.1	200	0			
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0

Method: ME-(AU)-[ENV]AN420

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE223496.021	L B232660 027		Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>ma/ka</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	ma/ka	0.2	<0.2	<0.2	200	0
02220100.021	LBLOLOGO.GLI		Carcinogenic PAHs, Ball TEQ (LOR)	mg/kg	0.3	<0.3	<0.3	134	0
				mg/kg	0.0	<0.0	-0.0	175	
				mg/kg	0.2	<0.2	<0.2	200	
		Currentee	dE sitebasses (Surgeste)	mg/kg	0.0	~0.0	<0.8	200	
		Surrogates		під/кд	-	0.4	0.4		
			2-fluorobiphenyi (Surrogate)	mg/kg	-	0.4	0.4		
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
PCBs in Soil							Meth	od: ME-(AU)-[ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE223496.021	LB232660.024		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	ma/ka	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	ma/ka	_	0	0	30	3
Total Deservable		Oolida Materiala							
Total Recoverable	Elements in Soll/waste	Solids/Materials	BYICPOES				Method: ME-	(AU)-[ENV]Ar	1040/AN320
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE223439.007	LB232813.014		Arsenic, As	mg/kg	1	2	1	94	46
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	7.2	6.3	37	14
			Copper, Cu	mg/kg	0.5	44	34	31	26
			Nickel, Ni	mg/kg	0.5	77	68	31	12
			Lead, Pb	mg/kg	1	150	110	31	33 ②
			Zinc, Zn	mg/kg	2	170	110	31	40 ②
SE223496.010	LB232812.014		Arsenic, As	mg/kg	1	2	2	76	5
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	19	19	33	1
			Copper, Cu	mg/kg	0.5	5.9	5.6	39	5
			Nickel, Ni	mg/kg	0.5	3.5	3.5	44	0
			Lead, Pb	mg/kg	1	9	10	40	11
			Zinc, Zn	mg/kg	2	11	11	48	1
SE223496.019	LB232812.024		Arsenic, As	mg/kg	1	3	4	58	27
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	14	18	33	27
			Copper, Cu	mg/kg	0.5	3.7	4.2	43	14
			Nickel, Ni	mg/kg	0.5	2.2	2.7	50	18
			Lead, Pb	mg/kg	1	13	15	37	9
			Zinc, Zn	mg/kg	2	110	150	32	32 ②
SE223496.021	LB232813.024		Arsenic, As	mg/kg	1	4	3	60	23
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	11	12	34	8
	Application mpin Gold Gold	1							
		4							
			Zinc, Zn	mg/kg	2	28	32	37	15
TPH (Total Pacare	arable Hydrocarbone) in	Soil					Math	od: ME (ALP I	
								Ju. IVIE-(AU)-[,
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE223496.021	LB232660.025		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

TRH (Total Recov	erable Hydrocarbons) in Soil (continued)					Meth	od: ME-(AU)-	ENVJAN40
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE223496.021	LB232660.025	TRH F Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
Triazines in Soil							Meth	od: ME-(AU)-	ENVJAN42
Original	Duplicate		Parameter	Unite	LOR	Original	Dunlicate	Criteria %	RPD %
SE223504 038	L B232660 022		Simazine	ma/ka	0.5	<0.5	<0.5	200	0
02220004.000	LD202000.022		Atrazine	ma/ka	0.5	<0.5	<0.5	200	0
			Propazine	mg/kg	0.5	<0.5	<0.5	200	0
			Terbuthylazine	mg/kg	0.5	<0.5	<0.5	200	0
			Metribuzin	mg/kg	0.5	<0.5	<0.5	200	0
			Prometryn	ma/ka	0.5	<0.5	<0.5	200	0
			Torbutan	mg/kg	0.5	<0.5	<0.5	200	0
				mg/kg	0.5	<0.5	<0.5	200	0
			Cyanazine	mg/kg	0.5	<0.5	<0.5	200	0
		Cumenstee	d14 a temberul (Surresete)	mg/kg		0.4	0.4	200	0
		Surrogates	d 14-p-terphenyl (Sunogate)	Hig/kg	-	0.4	0.4	30	0
VOC's in Soil							Meth	nod: ME-(AU)-	[ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE223597.002	LB232762.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.2	8.9	50	3
			d8-toluene (Surrogate)	mg/kg	-	9.3	9.2	50	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	6.9	6.9	50	1
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE223597.004	LB232762.017	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.7	8.8	50	1
			d8-toluene (Surrogate)	mg/kg	-	8.9	8.9	50	0
			Bromofluorobenzene (Surrogate)	mg/kg	-	6.6	6.5	50	1
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
Volatile Petroleum	Hydrocarbons in So	il					Meth	od: ME-(AU)-	(ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE223597 002	L B232762 014		TBH C6-C10	ma/ka	25	<25	<25	200	0
SE223337.002	LD232702.014		TPH C6.C9	ma/ka	20	<20	<20	200	0
		Surrogates	d4-1 2-dichloroethane (Surrogate)	ma/ka	20	0.2	80	30	3
		Surroyates	de teluene (Surregete)	mg/kg	-	9.2	0.9	20	2
			Bromefluerobonzone (Surregete)	mg/kg	-	9.5	9.2	20	1
			Berrana (E0)	mg/kg		0.9	-0.0	30	0
		VEN E DAHUS	TPH C6-C10 minus BTEY (51)	mg/kg	0.1	~U.I	~0.1	200	0
SE223507.004	1 B030760 047			mg/kg	20	~20 <25	~20	200	0
3EZ23397.004	LDZ32/02.01/			mg/kg	25	<20	<25	200	0
		Surrogatas	d4 1.2 diableroothono (Surreceta)		20	×20	×20	200	4
		Surrogates	d9 teluene (Surregete)	mg/kg	-	8.7	8.8	30	1
				mg/kg	-	8.9	8.9	30	0
	bits bits bits bits bits bits bits bits								
		VPH F Bands	Benzene (FU)	mg/kg	0.1	<0.1	<0.1	200	0
			I RH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil	Curry In Soil Method: ME-(AU)-[E Imple Number Parameter Units LOR Result Expected Criteria % Red 232817.002 Mercury mg/kg 0.05 0.22 0.2 70 - 130 232819.002 Mercury mg/kg 0.05 0.20 0.2 70 - 130 Pesticides in Soil	U)-[ENV]AN312					
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB232817.002	Mercury	mg/kg	0.05	0.22	0.2	70 - 130	110
LB232819.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	98
OC Pesticides in Soil	Method: ME-(AU)-[ENV]AN3 Parameter Units LOR Result Expected Criteria % Recovery % Mercury mg/kg 0.05 0.22 0.2 70 - 130 110 Mercury mg/kg 0.05 0.20 0.2 70 - 130 98	.U)-[ENV]AN420					

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB232660.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	120
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	104
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	111
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	108
		Endrin	mg/kg	0.2	0.3	0.2	60 - 140	128
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	123
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.15	40 - 130	89
OP Pesticides in So	li						Method: ME-(A	U)-[ENV]AN42
Sample Number Parameter Units LOR Result Ex							Criteria %	Recovery %
LB232660.002		Dichlorvos	mg/kg	0.5	1.3	2	60 - 140	66
		Diazinon (Dimpylate)	mg/kg	0.5	1.5	2	60 - 140	76
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.5	2	60 - 140	76
		Ethion	mg/kg	0.2	1.4	2	60 - 140	70
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	86
PAH (Polynuclear A	vromatic Hydroca	rbons) in Soil					Method: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB232660.002		Naphthalene	mg/kg	0.1	4.1	4	60 - 140	104
		Acenaphthylene	mg/kg	0.1	4.2	4	60 - 140	104
		Acenaphthene	mg/kg	0.1	4.4	4	60 - 140	111
		Phenanthrene	mg/kg	0.1	4.1	4	60 - 140	103
		Anthracene	mg/kg	0.1	4.1	4	60 - 140	101
		Fluoranthene	mg/kg	0.1	4.2	4	60 - 140	105
		Pyrene	mg/kg	0.1	4.4	4	60 - 140	111
		Benzo(a)pyrene	mg/kg	0.1	4.5	4	60 - 140	111
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	72
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	86
PCBs in Soil		Charaneter Units LOR Result Expected Criteria % Recovery % splachlor mg/kg 0.1 0.2 0.2 60-140 120 drin mg/kg 0.1 0.2 0.2 60-140 111 elds BHC mg/kg 0.1 0.2 0.2 60-140 111 elddrin mg/kg 0.1 0.2 0.2 60-140 118 odrin mg/kg 0.1 0.2 0.2 60-140 128 p'DDT mg/kg 0.1 0.2 0.2 60-140 128 p'DT mg/kg 0.1 0.2 0.2 60-140 128 p'DT mg/kg 0.1 0.2 0.2 60-140 128 p'DT mg/kg 0.1 0.2 0.2 60-140 168 contoris mg/kg 0.5 1.3 2 60-140 76 horpyrifos (Chorpyrifos Ethy) mg/kg 0.2						
Sample Number		Parameter	Unite	LOR	Result	Expected	Critoria %	Recovery %

LB232660.002 Arochlor 1260

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Elements i	n Soil/Waste Solids/Materials by ICPO				Method:	ME-(AU)-[EN	/JAN040/AN320	
Sample Number	Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB232812.002	Arsenic, As		mg/kg	1	370	318.22	80 - 120	118
	Cadmium, Cd		mg/kg	0.3	4.9	4.81	70 - 130	101
	Chromium, Cr		mg/kg	0.5	39	38.31	80 - 120	103
	Copper, Cu		mg/kg	0.5	340	290	80 - 120	116
	Nickel, Ni		mg/kg	0.5	200	187	80 - 120	106
	Lead, Pb		mg/kg	1	97	89.9	80 - 120	108
	Zinc, Zn		mg/kg	2	300	273	80 - 120	111
LB232813.002	Arsenic, As		mg/kg	1	340	318.22	80 - 120	108
	Cadmium, Cd		mg/kg	0.3	4.2	4.81	70 - 130	88
	Chromium, Cr		mg/kg	0.5	33	38.31	80 - 120	86
	Copper, Cu		mg/kg	0.5	330	290	80 - 120	114
	Nickel, Ni		mg/kg	0.5	190	187	80 - 120	103
	Lead, Pb		mg/kg	1	97	89.9	80 - 120	108
	Zinc, Zn		mg/kg	2	300	273	80 - 120	109
TRH (Total Recoverable Hydr	rocarbons) in Soil				_	N	lethod: ME-(A	U)-[ENV]AN403

mg/kg

0.2

0.5

0.4

60 - 140

117

Sample Number	Parameter	Units	LOR

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total Recove	arable Hydrocarboi	ns) in Soil (continued)				N	Nethod: ME-(A	U)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB232660.002		TRH C10-C14	mg/kg	20	52	40	60 - 140	130
		TRH C15-C28	mg/kg	45	49	40	60 - 140	123
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	103
	TRH F Bands	TRH >C10-C16	mg/kg	25	51	40	60 - 140	128
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	118
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	100
Triazines in Soil						N	Method: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB232660.002		Atrazine	mg/kg	0.5	3.5	4	70 - 130	88
		Propazine	mg/kg	0.5	3.4	4	70 - 130	85
		Terbuthylazine	mg/kg	0.5	3.4	4	70 - 130	85
		Prometryn	mg/kg	0.5	3.1	4	70 - 130	78
		Terbutryn	mg/kg	0.5	3.2	4	70 - 130	79
VOC's in Soil						N	Nethod: ME-(A	U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Sample Number LB232762.002	Monocyclic	Parameter Benzene	Units mg/kg	LOR 0.1	Result 4.5	Expected 5	Criteria % 60 - 140	Recovery % 89
Sample Number LB232762.002	Monocyclic Aromatic	Parameter Benzene Toluene	Units mg/kg mg/kg	LOR 0.1 0.1	Result 4.5 4.3	Expected 5 5	Criteria % 60 - 140 60 - 140	Recovery % 89 86
Sample Number LB232762.002	Monocyclic Aromatic	Parameter Benzene Toluene Ethylbenzene	Units mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1	Result 4.5 4.3 4.7	Expected 5 5 5	Criteria % 60 - 140 60 - 140 60 - 140	Recovery % 89 86 93
Sample Number LB232762.002	Monocyclic Aromatic	Parameter Benzene Toluene Ethylbenzene m/p-xylene	Units mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.2	Result 4.5 4.3 4.7 9.3	Expected 5 5 5 10	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	Recovery % 89 86 93 93
Sample Number LB232762.002	Monocyclic Aromatic	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.2 0.1	Result 4.5 4.3 4.7 9.3 4.7	Expected 5 5 5 10 5	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery % 89 86 93 93 93 93
Sample Number LB232762.002	Monocyclic Aromatic Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.2 0.1	Result 4.5 4.3 4.7 9.3 4.7 9.3	Expected 5 5 10 5 10	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130	Recovery % 89 93 93 93 93 96
Sample Number	Monocyclic Aromatic	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.2 0.1 - -	Result 4.5 4.3 4.7 9.3 4.7 9.6	Expected 5 5 10 5 10 10 10	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130	Recovery % 89 86 93 93 93 93 96 96
Sample Number	Monocyclic Aromatic	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.2 0.1 - -	Result 4.5 4.3 4.7 9.3 4.7 9.6 9.6 7.6	Expected 5 5 10 5 10 10 10 10	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130	Recovery % 89 86 93 93 93 96 96 96 76
Sample Number LB232762.002 Volatile Petroleum	Monocyclic Aromatic Surrogates Hydrocarbons In S	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.2 0.1 - -	Result 4.5 4.3 4.7 9.3 4.7 9.6 7.6	Expected 5 5 10 5 10 10 10 10	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Yethod: ME-(A	Recovery % 89 86 93 93 93 96 96 76 VJ-[ENV]AN433
Sample Number LB232762.002 Volatile Petroleum Sample Number	Monocyclic Aromatic Surrogates Hydrocarbons In S	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) roll Parameter	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.2 0.1 - - - LOR	Result 4.5 4.3 4.7 9.3 4.7 9.6 9.6 7.6 Result	Expected 5 5 10 5 10 10 10 10 20 5 5 20 20 20 20 20 20 20 20 20 20 20 20 20	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 70 - 130 Wethod: ME-(A Criteria %	Recovery % 89 86 93 93 96 96 96 76 VU-[ENV]AN433 Recovery %
Sample Number LB232762.002 Volatile Petroleum Sample Number LB232762.002	Monocyclic Aromatic Surrogates Hydrocarbons in S	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg	LOR 0.1 0.1 0.2 0.1 - - - - LOR 25	Result 4.5 4.3 4.7 9.3 4.7 9.6 9.6 7.6 Result 88	Expected 5 5 10 5 10 10 10 10 10 20 5 Expected 92.5	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Xethod: ME-(A Criteria % 60 - 140	Recovery % 89 86 93 93 96 96 76 VU-[ENV]AN433 Recovery % 95
Sample Number LB232762.002 Volatile Petroleum Sample Number LB232762.002	Monocyclic Aromatic Surrogates Hydrocarbons in S	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg	LOR 0.1 0.1 0.2 0.1 - - - LOR 25 20	Result 4.5 4.3 4.7 9.3 4.7 9.6 9.6 7.6 Result 88 75	Expected 5 5 10 5 10 10 10 10 10 20 5 80	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Xethod: ME-(A Criteria % 60 - 140 60 - 140	Recovery % 89 86 93 93 96 96 76 U)-[ENV]AN433 Recovery % 95 94
Sample Number LB232762.002 Volatile Petroleum Sample Number LB232762.002	Monocyclic Aromatic Surrogates Hydrocarbons in S	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	Result 4.5 4.3 4.7 9.3 4.7 9.6 9.6 7.6 Result 88 75 9.6	Expected 5 5 10 5 10 10 10 10 10 2 5 80 80 10	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Wethod: ME-(A Criteria % 60 - 140 60 - 140 70 - 130	Recovery % 89 86 93 93 96 96 76 VJ-[ENV]AN433 Recovery % 95 94 96
Sample Number LB232762.002 Volatile Petroleum Sample Number LB232762.002	Monocyclic Aromatic Surrogates Hydrocarbons in S Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	Result 4.5 4.3 4.7 9.3 4.7 9.6 9.6 7.6 Result 88 75 9.6 7.6	Expected 5 5 10 5 10 10 10 10 10 25 80 10 10	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Vethod: ME-(A Criteria % 60 - 140 60 - 140 70 - 130 70 - 130	Recovery % 89 86 93 93 96 96 76 U)-[ENV]AN433 Recovery % 95 94 96 76

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Met	hod: ME-(Al	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE223496.001	LB232817.004	Mercury	mg/kg	0.05	0.23	<0.05	0.2	107

OC Pesticides in Soil

QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%
SE223504.031	LB232660.029	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-
		Alpha BHC	mg/kg	0.1	<0.1	-	-
		Lindane	mg/kg	0.1	<0.1	-	-
		Heptachlor	mg/kg	0.1	<0.1	0.2	118
		Aldrin	mg/kg	0.1	<0.1	0.2	103
		Beta BHC	mg/kg	0.1	<0.1	-	-
		Delta BHC	mg/kg	0.1	<0.1	0.2	117
		Heptachlor epoxide	mg/kg	0.1	<0.1	-	-
		o,p'-DDE	mg/kg	0.1	<0.1	-	-
		Alpha Endosulfan	mg/kg	0.2	<0.2	-	-
		Gamma Chlordane	mg/kg	0.1	<0.1	-	-
		Alpha Chlordane	mg/kg	0.1	<0.1	-	-
		trans-Nonachlor	mg/kg	0.1	<0.1	-	-
		p,p'-DDE	mg/kg	0.1	<0.1	-	-
		Dieldrin	mg/kg	0.2	<0.2	0.2	111
		Endrin	mg/kg	0.2	<0.2	0.2	128
		o,p'-DDD	mg/kg	0.1	<0.1	-	-
		o,p'-DDT	mg/kg	0.1	<0.1	-	-
		Beta Endosulfan	mg/kg	0.2	<0.2	-	-
		p,p'-DDD	mg/kg	0.1	<0.1	-	-
		p,p'-DDT	mg/kg	0.1	<0.1	0.2	106
		Endosulfan sulphate	mg/kg	0.1	<0.1	-	-
		Endrin Aldehyde	mg/kg	0.1	<0.1	-	-
		Methoxychlor	mg/kg	0.1	<0.1	-	-
		Endrin Ketone	mg/kg	0.1	<0.1	-	-
		Isodrin	mg/kg	0.1	<0.1	-	-
		Mirex	mg/kg	0.1	<0.1	-	-
		Total CLP OC Pesticides	mg/kg	1	<1	-	-
	Surrogate	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	-	100

OP Pesticides in Soil

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
SE223504.031	LB232660.028		Dichlorvos	mg/kg	0.5	<0.5	2	77	
			Dimethoate	mg/kg	0.5	<0.5	-	-	
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	87	
			Fenitrothion	mg/kg	0.2	<0.2	-	-	1
			Malathion	mg/kg	0.2	<0.2	-	-]
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	89	1
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-	1
			Bromophos Ethyl	mg/kg	0.2	<0.2	-	-	1
	Methidathion mg/kg			mg/kg	0.5	<0.5	-	-	1
		Ethion	mg/kg	0.2	<0.2	2	79	1	
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-	1
			Total OP Pesticides*	mg/kg	1.7	<1.7	-	-	1
	-	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	88	1
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	-	96	1
Total Recoverab	le Elements in Soil/Was	te Solids/Mate	rials by ICPOES				Method: M	E-(AU)-[ENV]/	AN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	
SE223496.001	LB232812.004		Arsenic, As	mg/kg	1	50	3	50	
			Cadmium, Cd	mg/kg	0.3	45	<0.3	50	
			Chromium, Cr	mg/kg	0.5	56	13	50	
			Copper, Cu	mg/kg	0.5	54	6.2	50	
			Nickel Ni	ma/ka	0.5	49	4.5	50	

mg/kg

mg/kg

mg/kg

1

2

55

68

13

24

50

50

Lead, Pb

Zinc, Zn

85

88

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverab	le Elements in Soil/W	/aste Solids/Mate	rials by ICPOES (continued)				Method: ME	-(AU)-[ENV]	AN040/AN320
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE223638.001	LB232813.004		Arsenic, As	mg/kg	1	55	3	50	105
			Cadmium, Cd	mg/kg	0.3	50	0.4	50	100
			Chromium, Cr	mg/kg	0.5	55	5.4	50	99
			Copper, Cu	mg/kg	0.5	100	47	50	110
			Nickel, Ni	mg/kg	0.5	54	3.2	50	102
			Lead, Pb	mg/kg	1	290	360	50	-145 ④
			Zinc, Zn	mg/kg	2	260	260	50	-1 ④
Triazines in Soil							Met	hod: ME-(AU	J)-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	6
SE223504.031	LB232660.026		Simazine	mg/kg	0.5	<0.5	-	-	
			Atrazine	mg/kg	0.5	<0.5	4	71	
			Propazine	mg/kg	0.5	<0.5	4	77	
			Terbuthylazine	mg/kg	0.5	<0.5	4	76	_
			Metribuzin	mg/kg	0.5	<0.5	-	-	
			Prometryn	mg/kg	0.5	<0.5	4	72	_
			Terbutryn	mg/kg	0.5	<0.5	4	75	_
			Cyanazine	mg/kg	0.5	<0.5	-	-	_
			Hexazinone	mg/kg	1	<1	-	-	_
		Surrogates	d14-p-terphenyl (Surrogate)	%	-	0.4	-	72	_
	LB232660.028	Surrogates	d14-p-terphenyl (Surrogate)	%	-	0.4	-	96	
VOC's in Soil							Met	hod: ME-(AU	J)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE223496.019	LB232762.004	Monocyclic	Benzene	mg/kg	0.1	4.0	<0.1	5	80
		Aromatic	Toluene	mg/kg	0.1	4.0	<0.1	5	79
			Ethylbenzene	mg/kg	0.1	4.3	<0.1	5	85
			m/p-xylene	mg/kg	0.2	8.6	<0.2	10	86
			o-xylene	mg/kg	0.1	4.3	<0.1	5	85
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.1	9.6	10	91
			d8-toluene (Surrogate)	mg/kg	-	9.2	9.7	10	92
			Bromofluorobenzene (Surrogate)	mg/kg	-	6.9	7.3	10	69 ①
		Totals	Total Xylenes	mg/kg	0.3	13	<0.3	-	-
			Total BTEX	mg/kg	0.6	25	<0.6	-	-
Volatile Petroleu	m Hydrocarbons in S	oil					Met	hod: ME-(AL	J)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE223496.019	LB232762.004		TRH C6-C10	mg/kg	25	80	<25	92.5	87
			TRH C6-C9	mg/kg	20	70	<20	80	87
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.1	9.6	10	91
		Surrogates	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg	-	9.1 9.2	9.6 9.7	10 10	91 92
		Surrogates	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg		9.1 9.2 6.9	9.6 9.7 7.3	10 10 -	91 92 69
		Surrogates VPH F	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0)	mg/kg mg/kg mg/kg mg/kg	- - 0.1	9.1 9.2 6.9 4.0	9.6 9.7 7.3 <0.1	10 10 - -	91 92 69 -

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ¹ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

					(СНА		OF C	USTOI	DY 8	AI	NA	LYS	SIS	RE	QU	EST	Г						Pa	age 1 d	of 5
SGS Environmental S	ervices	Cor	npany	y Nam	e:	Lante	rra Co	onsulting	Pty Ltd					F	rojec	t Nam	e/No:		P21	091 –	Cusad	ck PI	Yass			
Unit 16, 33 Maddox S	treet	Add	ress:		-	Unit 4	I, 19 T	renerry S	Street					F	urcha	ase O	rder N	0:								
Alexandria NSW 2015					-	West	on, AC	CT, 2611						F	Result	s Req	uired	By:	Star	ndard t	urnar	ound				
Telephone No: (02) 8	5940400													Т	eleph	none:			043	2 324 3	348					
Facsimile No: (02) 8	5940499	Cor	ntact M	Name:		Chris	Gunto	on						F	acsin	nile:										
Email:														E	mail	Resul	ts:		Chri	s.gunt	on@la	anterr	a.con	n.au		
Client Sample ID	Date Sampled	Lat Samp ID	o ole	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Metals	CL17, TRH, BTEX, PAH, OCP,OPP,PCB, 8 Metals	Phenoxy Acid Herbicides and	Triazine	Achaetoe ID														
LC1 0.0-0.1	1/9/2021	1			X		1	Х			-	1	-	$\uparrow \uparrow$				1								
LC1 0.2-0.3	1/9/2021				X		1				X										1	-				
LC2 0.0-0.1	1/9/2021	Z			X		1	X				-						1			1	-				
LC2 0.2-0.3	1/9/2021				X	1	1				X							-	1	-	1	-	-			
LC3 0.0-0.1	1/9/2021				X		1				X										1					
LC3 0.2-0.3	1/9/2021	3			X	1	1	X			-	1	-	+									-			
LC4 0.0-0.1	1/9/2021	4		1	X		1	X			-	+	-	++					-	-	-	-	+			
LC4 0.2-0.3	1/9/2021			1	X	1	1				X			++				-		-	-	-				
LC5 0.0-0.1	1/9/2021	5	-		X		1	X			+	+		++				-	-		+					
Relinquished By: K Locky	vood		Date	e/Time	e: 6/9/	/2021	1	14.30			Rec	eiveo	By:	00	2					Date	/Time	10	1.9:	21	12	3)
Relinquished By:			Date	e/Time	e:						Rec	eived	By:							Date	/Time	(-				
Samples Intact: Nes No)		Tem	nperat	ure:	Ambie	ent / C	hilled	0.0		Sam	ple (Coole	r Sea	led:	Yes	No			Labo	ratory	Quo	tatior	No:		
			Con	nment	ts:															sg: S	S EH	s sy 23	dne 49	y co	с	

source: Sydney.pdf page: 1 SGS Ref: SE223496_COC

					(СНА	IN	OF C	USTOI	DY 8		IAL	YS	IS R	EQI	JES	т						Page 2 of	f 5
SGS Environmental S	ervices	Co	mpan	y Nam	e:	Lante	rra Co	onsulting	Pty Ltd				10 9 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Proj	ect Na	me/No):	P21	091 - 0	Cusac		ass		
Unit 16, 33 Maddox St	reet	Add	dress:		-	Unit 4	, 19 T	renerry S	Street					Purc	hase (Order	No:							
Alexandria NSW 2015					_	West	on, AC	CT, 2611						Res	ults Re	quired	By:	Stan	dard to	urnaro	und			
Telephone No: (02) 85	940400				_									Tele	phone	:		0432	2 324 3	348				
Facsimile No: (02) 85	5940499	Co	ntact I	Name:		Chris	Gunto	on						Face	simile:									
Email:	1													Ema	il Resu	ults:		Chris	s.gunto	on@lar	nterra.	com.au		
Client Sample ID	Date Sampled	Lal Samı ID	b ple	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Metals	CL17, TRH, BTEX, PAH, OCP,OPP,PCB, 8 Metals	Phenoxy Acid Herbicides and	Triazine HOLD	Asbestos ID							s.gunton@lanterra.com.au					
LC5 0.1-0.2	1/9/2021				X		1				X		+								-			
LC6 0.0-0.1	1/9/2021	6			X		1	X					++											
LC7 0.0-0.1	1/9/2021	9			X		1	X					++			+			-	+				
LC8 0.0-0.1	1/9/2021				X		1				x		+			+				+				
LC8 0.25-0.35	1/9/2021	8	(X		1	X											+	+				
LC9 0.0-0.1	1/9/2021	9			X		1	X								+	+							
LC9 0.2-0.3	1/9/2021				X		1				X		++				+			+				
LC10 0.0-0.1	1/9/2021	10			X		1	X		Х	+		++		-	+			+					
LC10 0.25-0.35	1/9/2021				X		1				X		++				+							
Relinquished By: K Lockw	ood		Date	e/Time	e: 6/9/	2021	1	4.30			Recei	ved E	y:						Date/	Time /	119	21	1025)
Relinquished By:			Date	e/Time):			~			Recei	ved E	y: <						Date/	Time	0-1	- []	10.20	
Samples Intact: Yes/No			Tem	perat	ure:	Ambie	ent / C	hilled	10.0		Samp	le Co	oler §	Sealed	Yes	No			Labor	atory (Quota	tion No	:	
			Com	nment	S:					l.														

					(СНА		OF C	USTOI	DY 8	AI	NA	LYS	SIS	RE	QU	EST	-					F	Page	3 of 5
SGS Environmental S	ervices	Com	npany	Nam	e:	Lante	rra Co	onsulting	Pty Ltd					P	rojec	t Nam	ne/No:		P210	91 – 0	Cusack	PIYa	ISS		
Unit 16, 33 Maddox St	reet	Add	ress:		-	Unit 4	, 19 T	renerry S	Street					P	urcha	ase O	rder No	-							
Alexandria NSW 2015					-	West	on, AC	CT, 2611						R	esult	s Req	uired E	By:	Stand	dard tu	Irnaroi	und			
Telephone No: (02) 85	940400				-									— т	eleph	ione:			0432	324 3	48				
Facsimile No: (02) 85	940499	Con	tact N	lame:	-	Chris	Gunto	on						Fa	acsin	nile:		-		-10 h /					
Email:					-									E	mail	Resul	ts:	-	Chris	.gunto	n@lar	nterra.	com.au		
Client Sample ID	Date Sampled	Lab Samp ID	le	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Metals	CL17, TRH, BTEX, PAH, OCP,OPP,PCB, 8 Metals	Phenoxy Acid Herbicides and	Triazine	Ashestos ID								ris.gunton@lanterra.com.au					
LC11 0.0-0.1	1/9/2021	11			X		1	X		Х	+	+													
LC11 0.3-0.4	1/9/2021				X		1				X	+													
LC12 0.0-0.1	1/9/2021	12			X		1	x		Х		+													
LC12 0.3-0.4	1/9/2021				X	1	1				X														
LC13 0.0-0.1	2/9/2021	13			X		1	X		X		+													
LC13 0.4-0.5	2/9/2021				X		1				X	+													
LC14 0.0-0.1	2/9/2021	14			X		1	X				+													
LC14 0.3-0.4	2/9/2021	- /	-		Х		1				X	1													
LC15 0.0-0.1	2/9/2021	(5	-		Х		1	Х			-														
Relinquished By: K Lockw	rood		Date	/Time	e: 6/9/	2021	1	4.30			Rece	eived	By:			>	1			Date/T	ime	10	9.21	1	1-32
Relinquished By:			Date	/Time	e:			-			Rece	eived	By:						1	Date/T	Time	0		(0.20
Samples Intact: Yes/No			Tem	perat	ure:	Ambie	ent / C	hilled	0.0		Sam	ple C	Cooler	Seal	ed: <	Yes/	No		l	abora	atory (Quota	tion No:		
			Com	nment	s:																				

					(СНА	IN	OF C	USTOI	DY 8	A	N/	4L'	YSI	S RI	EQU	IES ⁻	Г					Pa	age 4 of 5
SGS Environmental S	ervices	Co	mpan	y Nam	e:	Lante	erra Co	onsulting	Pty Ltd						Proje	ct Nan	ne/No:		P210	091 – (Cusac	k PI Y	ass	
Unit 16, 33 Maddox St	reet	Add	dress		-	Unit 4	1, 19 T	renerry S	Street						Purch	nase C	rder N	0:						
Alexandria NSW 2015					-	West	on, AC	CT, 2611							Resu	Its Red	quired	By:	Stan	dard tu	Irnaro	und		
Telephone No: (02) 85	940400				-										Telep	hone:			0432	324 3	48			
Facsimile No: (02) 85	5940499	Co	ntact	Name:		Chris	Gunto	on							Facs	imile:								
Email:					-										Emai	l Resu	lts:		Chris	s.gunto	on@la	nterra	com.au	
Client Sample ID	Date Sampled	Lal Sam ID	b ple	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Metals	CL17, TRH, BTEX, PAH, OCP,OPP,PCB, 8 Metals	Phenoxy Acid Herbicides and	Triazine	HOLD	Asbestos ID	4-17 Metals Group 1										
LC15 0.3-0.4	2/9/2021				X	1	1				>	(+							
LC16 0.0-0.1	2/9/2021	16			X		1	X		Х	+	+												
LC16 0.4-0.5	2/9/2021				X		1				>	(+					
LC17 0.0-0.1	2/9/2021	17	2		X		1	X			-					+			+					
LC18 0.0-0.1	2/9/2021	15	8		X		1	X			-	-							+			1		
LC18 0.4-0.5	2/9/2021				X		1				>	(1	1	1			
Hole 0.0-0.1	2/9/2021	19	7		X		2		X		-		Х			1								
QC1	1/9/2021	20	0		X		1	X				+										1	+	
QC2	1/9/2021				X		1					+		Х						1	1		Please	forward to En
Relinquished By: K Lockw	rood		Date	e/Time	e: 6/9/	2021	1	4.30			Rec	eive	ed B	y:	2		1		1	Date/	Time	10	921	11:3
Relinquished By:			Date	e/Time	e:						Rec	eive	ed B	y:						Date/	lime c	0	601	10-20
Samples Intact: Yes/No			Ten	nperat	ure:	Ambie	ent / Q	hilled	00		San	nple	Cod	oler S	ealed:	Yes	No			Labor	atory	Quota	tion No:	
			Con	nment	s:			(

				(СНА	IN	OF C	USTOI	DY 8	A	IAL	.YS	SIS	RE	QU	EST						Pa	age 5 of 5	
SGS Environmental S	ervices	Compa	ny Nan	ne:	Lante	rra Co	onsulting	Pty Ltd				durt species	P	roiec	t Nam	e/No:		P210	91 - 0	Cusack	PIYa	SS		
Unit 16, 33 Maddox St	reet	Addres	S:		Unit 4	I, 19 T	renerry S	street					P	urcha	ase O	der No								
Alexandria NSW 2015					West	on, AC	CT, 2611						R	Result	s Req	uired E	By:	Stan	dard tu	Irnaro	und			
Telephone No: (02) 85	940400												т	eleph	none:			0432	324 3	48				
Facsimile No: (02) 85	5940499	Contac	t Name	: '	Chris	Gunto	on						F	acsin	nile:		-							
Email:				-									Ε	mail	Result	s:		Chris	gunto	on@lar	nterra.c	com.au		
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Metals s	CL17, TRH, BTEX, PAH, OCP,OPP,PCB, 8 Metals	Phenoxy Acid Herbicides and	Triazine HOLD	Asbestos ID													
SP1	2/9/2021			X	1	2				x		+												
SP2	2/9/2021	1 (*		x	+	2		X			X		$\left \right $											
SP3	2/9/2021	-]		x		2				×			+											
Relinquished By: K Lockw	ood	Da	ate/Tim	e: 6/9/	2021	1	4.30			Rece	ived	By:	<u> </u>	~				1	Date/1	Time	10.	8.21	(d	13.
Relinquished By:		Da	ate/Tim	e:						Rece	ived	By:		2					Date/1	Time		1 ()		20
Samples Intact: Yes No		Te	mpera	ture:	Ambie	ent / Q	hilled	0.0		Sam	ole Co	ooler	Sea	led:	Yes	No			_abora	atory (Quotat	ion No:		
		Co	ommen	ts:																				

- CLIENT DETAILS -		LABORATORY DETAILS	
Contact Client Address	Chris Gunton LANTERRA CONSULTING PTY LTD PO BOX 3626 WESTON ACT 2611	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	0432 324 348	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Chris.Gunton@lanterra.com.au	Email	au.environmental.sydney@sgs.com
Project	P21091 - Cusack PI Yass	SGS Reference	SE223496 R0
Order Number	P21091	Date Received	10 Sep 2021
Samples	2	Date Reported	20 Sep 2021

COMMENTS -

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample # 19;A portion of the sample supplied has been sub-sampled for asbestos analysis in soil according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

17 soil samples have been placed on hold as no tests have been assigned for them by the client. These samples will not be processed. Phenoxy Acid Herbicides subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Number 2562/14420. Report Number ME322581

SIGNATORIES

Akheeqar BENIAMEEN Chemist

kinty

Ly Kim HA Organic Section Head

Bennet LO Senior Chemist

e.

Yusuf KUTHPUDIN Asbestos Analyst

Agan.

Kamrul AHSAN Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

94 0499

www.sgs.com.au

SE223496 R0

Fibre Identifica	tion in soil				Method	AN602
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE223496.019	Hole 0.0-0.1	Soil	87g Clay,Rocks	02 Sep 2021	No Asbestos Found at RL of 0.1g/kg	<0.01
SE223496.021	SP2	Soil	244g Clay,Sand,Rock s	02 Sep 2021	No Asbestos Found at RL of 0.1g/kg	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace aspestos fibres have been detected (i.e. no respirable "fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -Amosite Brown Asbestos NA Not Analysed White Asbestos Chrysotile INR Listed. Not Required --Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles -*** Indicates that both * and ** apply. -

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

- CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Huong Crawford	Manager	Adam Atkinson
Client	SGSI&ESYDNEY	Laboratory	SGS Melbourne EH&S
Address	Unit 16, 33 Maddox Street	Address	10/585 Blackburn Road
	Alexandria		Notting Hill Victoria 3168
	N3W 2015		
Telephone	02 8594 0400	Telephone	+61395743200
Facsimile	02 8594 0499	Facsimile	+61395743399
Email	au.environmental.sydney@sgs.com	Email	Au.SampleReceipt.Melbourne@sgs.com
Project	P21091 - Cusack PI Yass	SGS Reference	ME322581 R0
Order Number	SE223496	Date Received	14 Sep 2021
Samples	21	Date Reported	17 Sep 2021

COMMENTS

Whilst SGS laboratories conform to ISO:17025 standards, results of analysis in this report fall outside of the current scope of NATA accreditation.

SIGNATORIES _

Som Wan

Susan WAN Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and

Bldg 10, 58

Bldg 10, 585 Blackburn Rd Notting Hill VIC

t +61 3 9574 3200

f +61 3 9574 3399

		Sample Number Sample Matrix Sample Date Sample Name	ME322581.001 Soil 09 Jan 2021 SE223496.001	ME322581.002 Soil 09 Jan 2021 SE223496.002	ME322581.003 Soil 09 Jan 2021 SE223496.003	ME322581.004 Soil 09 Jan 2021 SE223496.004
Parameter	Units	LOR				
Pesticides / Herbicides in Soils by LC-MS/MS MA-1569.	SL.01 Method: I	MA1569 Teste	ed: 17/9/2021			
Bromoxynil	mg/kg	0.5	-	-	-	-
4-Chlorophenocy acetic acid (4-CPA)	mg/kg	0.5	-	-	-	-
Clopyralid	mg/kg	0.5	-	-	-	-
2,4-D [(2,4-Dichlorophenoxy) acetic acid]	mg/kg	0.01	-	-	-	-
2,4-DB	mg/kg	0.5	-	-	-	-
2,6-D	mg/kg	0.5	-	-	-	-
Dicamba	mg/kg	0.01	-	-	-	-
Dichloroprop / Dichlorprop-P	mg/kg	0.01	-	-	-	-
Dinoseb	mg/kg	0.5	-	-	-	-
Fluroxypyr	mg/kg	0.5	-	-	-	-
loxynil	mg/kg	0.5	-	-	-	-
MCPA	mg/kg	0.01	-	-	-	-
МСРВ	mg/kg	0.01	-	-	-	-
mecoprop	mg/kg	0.01	-	-	-	-
Picloram	mg/kg	0.01	-	-	-	-
2,4,5-T	mg/kg	0.01	-	-	-	-
2,4,5-TP	mg/kg	0.5	-	-	-	-
2,4,6-Trichlorophenoxy acetic acid	mg/kg	0.5	-	-	-	-
Triclopyr	mg/kg	0.01	-	-	-	-

		Sample Number Sample Matrix Sample Date Sample Name	ME322581.005 Soil 09 Jan 2021 SE223496.005	ME322581.006 Soil 09 Jan 2021 SE223496.006	ME322581.007 Soil 09 Jan 2021 SE223496.007	ME322581.008 Soil 09 Jan 2021 SE223496.008
Parameter	Units	LOR				
Pesticides / Herbicides in Soils by LC-MS/MS MA-1569.	SL.01 Method: I	MA1569 Teste	ed: 17/9/2021			
Bromoxynil	mg/kg	0.5	-	-	-	-
4-Chlorophenocy acetic acid (4-CPA)	mg/kg	0.5	-	-	-	-
Clopyralid	mg/kg	0.5	-	-	-	-
2,4-D [(2,4-Dichlorophenoxy) acetic acid]	mg/kg	0.01	-	-	-	-
2,4-DB	mg/kg	0.5	-	-	-	-
2,6-D	mg/kg	0.5	-	-	-	-
Dicamba	mg/kg	0.01	-	-	-	-
Dichloroprop / Dichlorprop-P	mg/kg	0.01	-	-	-	-
Dinoseb	mg/kg	0.5	-	-	-	-
Fluroxypyr	mg/kg	0.5	-	-	-	-
loxynil	mg/kg	0.5	-	-	-	-
MCPA	mg/kg	0.01	-	-	-	-
МСРВ	mg/kg	0.01	-	-	-	-
mecoprop	mg/kg	0.01	-	-	-	-
Picloram	mg/kg	0.01	-	-	-	-
2,4,5-T	mg/kg	0.01	-	-	-	-
2,4,5-TP	mg/kg	0.5	-	-	-	-
2,4,6-Trichlorophenoxy acetic acid	mg/kg	0.5	-	-	-	-
Triclopyr	mg/kg	0.01	-	-	-	-

		Sample Number Sample Matrix Sample Date Sample Name	ME322581.009 Soil 09 Jan 2021 SE223496.009	ME322581.010 Soil 01 Sep 2021 SE223496.010	ME322581.011 Soil 01 Sep 2021 SE223496.011	ME322581.012 Soil 01 Sep 2021 SE223496.012
Parameter	Units	LOR				
Pesticides / Herbicides in Soils by LC-MS/MS MA-1569.	SL.01 Method:	MA1569 Test	ed: 17/9/2021			
Bromoxynil	mg/kg	0.5	-	<0.5	<0.5	<0.5
4-Chlorophenocy acetic acid (4-CPA)	mg/kg	0.5	-	<0.5	<0.5	<0.5
Clopyralid	mg/kg	0.5	-	<0.5	<0.5	<0.5
2,4-D [(2,4-Dichlorophenoxy) acetic acid]	mg/kg	0.01	-	<0.01	<0.01	<0.01
2,4-DB	mg/kg	0.5	-	<0.5	<0.5	<0.5
2,6-D	mg/kg	0.5	-	<0.5	<0.5	<0.5
Dicamba	mg/kg	0.01	-	<0.01	<0.01	<0.01
Dichloroprop / Dichlorprop-P	mg/kg	0.01	-	<0.01	<0.01	<0.01
Dinoseb	mg/kg	0.5	-	<0.5	<0.5	<0.5
Fluroxypyr	mg/kg	0.5	-	<0.5	<0.5	<0.5
loxynil	mg/kg	0.5	-	<0.5	<0.5	<0.5
MCPA	mg/kg	0.01	-	<0.01	<0.01	<0.01
МСРВ	mg/kg	0.01	-	<0.01	<0.01	<0.01
mecoprop	mg/kg	0.01	-	<0.01	<0.01	<0.01
Picloram	mg/kg	0.01	-	<0.01	<0.01	<0.01
2,4,5-T	mg/kg	0.01	-	<0.01	<0.01	<0.01
2,4,5-TP	mg/kg	0.5	-	<0.5	<0.5	<0.5
2,4,6-Trichlorophenoxy acetic acid	mg/kg	0.5	-	<0.5	<0.5	<0.5
Triclopyr	mg/kg	0.01	-	<0.01	<0.01	<0.01

		Sample Number Sample Matrix Sample Date Sample Name	ME322581.013 Soil 02 Sep 2021 SE223496.013	ME322581.014 Soil 09 Feb 2021 SE223496.014	ME322581.015 Soil 09 Feb 2021 SE223496.015	ME322581.016 Soil 02 Sep 2021 SE223496.016
Parameter	Units	LOR				
Pesticides / Herbicides in Soils by LC-MS/MS MA-1569.S	L.01 Method:	MA1569 Teste	d: 14/9/2021			
Bromoxynil	mg/kg	0.5	<0.5	-	-	<0.5
4-Chlorophenocy acetic acid (4-CPA)	mg/kg	0.5	<0.5	-	-	<0.5
Clopyralid	mg/kg	0.5	<0.5	-	-	<0.5
2,4-D [(2,4-Dichlorophenoxy) acetic acid]	mg/kg	0.01	<0.01	-	-	<0.01
2,4-DB	mg/kg	0.5	<0.5	-	-	<0.5
2,6-D	mg/kg	0.5	<0.5	-	-	<0.5
Dicamba	mg/kg	0.01	<0.01	-	-	<0.01
Dichloroprop / Dichlorprop-P	mg/kg	0.01	<0.01	-	-	<0.01
Dinoseb	mg/kg	0.5	<0.5	-	-	<0.5
Fluroxypyr	mg/kg	0.5	<0.5	-	-	<0.5
loxynil	mg/kg	0.5	<0.5	-	-	<0.5
МСРА	mg/kg	0.01	<0.01	-	-	<0.01
МСРВ	mg/kg	0.01	<0.01	-	-	<0.01
тесоргор	mg/kg	0.01	<0.01	-	-	<0.01
Picloram	mg/kg	0.01	<0.01	-	-	<0.01
2,4,5-T	mg/kg	0.01	<0.01	-	-	<0.01
2,4,5-TP	mg/kg	0.5	<0.5	-	-	<0.5
2,4,6-Trichlorophenoxy acetic acid	mg/kg	0.5	<0.5	-	-	<0.5
Triclopyr	mg/kg	0.01	<0.01	-	-	<0.01

		Sample Number Sample Matrix Sample Date Sample Name	ME322581.017 Soil 09 Feb 2021 SE223496.017	ME322581.018 Soil 09 Feb 2021 SE223496.018	ME322581.019 Soil 09 Feb 2021 SE223496.019	ME322581.020 Soil 09 Jan 2021 SE223496.020
Parameter	Units	LOR				
Pesticides / Herbicides in Soils by LC-MS/MS MA-1569.	SL.01 Method: I	MA1569 Teste	ed: 17/9/2021			
Bromoxynil	mg/kg	0.5	-	-	-	-
4-Chlorophenocy acetic acid (4-CPA)	mg/kg	0.5	-	-	-	-
Clopyralid	mg/kg	0.5	-	-	-	-
2,4-D [(2,4-Dichlorophenoxy) acetic acid]	mg/kg	0.01	-	-	-	-
2,4-DB	mg/kg	0.5	-	-	-	-
2,6-D	mg/kg	0.5	-	-	-	-
Dicamba	mg/kg	0.01	-	-	-	-
Dichloroprop / Dichlorprop-P	mg/kg	0.01	-	-	-	-
Dinoseb	mg/kg	0.5	-	-	-	-
Fluroxypyr	mg/kg	0.5	-	-	-	-
loxynil	mg/kg	0.5	-	-	-	-
MCPA	mg/kg	0.01	-	-	-	-
МСРВ	mg/kg	0.01	-	-	-	-
mecoprop	mg/kg	0.01	-	-	-	-
Picloram	mg/kg	0.01	-	-	-	-
2,4,5-T	mg/kg	0.01	-	-	-	-
2,4,5-TP	mg/kg	0.5	-	-	-	-
2,4,6-Trichlorophenoxy acetic acid	mg/kg	0.5	-	-	-	-
Triclopyr	mg/kg	0.01	-	-	-	-

	San Sa Sa S	iple Numbe imple Matrix Sample Date ample Name	r ME322581.021 x Soil e 09 Feb 2021 e SE223496.021
Parameter	Units	LOR	
Pesticides / Herbicides in Soils by LC-MS/MS MA-1569.	SL.01 Method: MA1	569 Tes	ted: 17/9/2021
Bromoxynil	mg/kg	0.5	-
4-Chlorophenocy acetic acid (4-CPA)	mg/kg	0.5	-
Clopyralid	mg/kg	0.5	-
2,4-D [(2,4-Dichlorophenoxy) acetic acid]	mg/kg	0.01	-
2,4-DB	mg/kg	0.5	-
2,6-D	mg/kg	0.5	-
Dicamba	mg/kg	0.01	-
Dichloroprop / Dichlorprop-P	mg/kg	0.01	-
Dinoseb	mg/kg	0.5	-
Fluroxypyr	mg/kg	0.5	-
loxynil	mg/kg	0.5	-
MCPA	mg/kg	0.01	-
МСРВ	mg/kg	0.01	-
mecoprop	mg/kg	0.01	-
Picloram	mg/kg	0.01	-
2,4,5-T	mg/kg	0.01	-
2,4,5-TP	mg/kg	0.5	-
2,4,6-Trichlorophenoxy acetic acid	mg/kg	0.5	-
Triclopyr	mg/kg	0.01	-

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Pesticides / Herbicides in Soils by LC-MS/MS MA-1569.SL.01 Method: MA1569

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS	MSD %RPD
	Reference					%Recovery	%Recovery	
Bromoxynil	LB044454	mg/kg	0.5	<0.5	0%	NA		
4-Chlorophenocy acetic acid (4-CPA)	LB044454	mg/kg	0.5	<0.5	0%	NA		
Clopyralid	LB044454	mg/kg	0.5	<0.5	0%	NA		
2,4-D [(2,4-Dichlorophenoxy) acetic acid]	LB044454	mg/kg	0.01	<0.01	0%	NA	NA	NA
2,4-DB	LB044454	mg/kg	0.5	<0.5	0%	NA		
2,6-D	LB044454	mg/kg	0.5	<0.5	0%	NA		
Dicamba	LB044454	mg/kg	0.01	<0.01	0%	NA		
Dichloroprop / Dichlorprop-P	LB044454	mg/kg	0.01	<0.01	0%	NA		
Dinoseb	LB044454	mg/kg	0.5	<0.5	0%	NA		
Fluroxypyr	LB044454	mg/kg	0.5	<0.5	0%	NA		
loxynil	LB044454	mg/kg	0.5	<0.5	0%	NA		
MCPA	LB044454	mg/kg	0.01	<0.01	0%	NA		
MCPB	LB044454	mg/kg	0.01	<0.01	0%	NA		
mecoprop	LB044454	mg/kg	0.01	<0.01	0%	NA		
Picloram	LB044454	mg/kg	0.01	<0.01	0%	NA		
2,4,5-T	LB044454	mg/kg	0.01	<0.01	0%	NA		
2,4,5-TP	LB044454	mg/kg	0.5	<0.5	0%	NA		
2,4,6-Trichlorophenoxy acetic acid	LB044454	mg/kg	0.5	<0.5	0%	NA		
Triclopyr	LB044454	mg/kg	0.01	<0.01	0%	NA		

METHOD SUMMARY

— метнор MA-1569

METHODOLOGY SUMMARY

This method is intended for the analysis of a diverse range of pesticides and herbicides by Liquid Chromatography using a Tandem Mass Spectrometry detector (LC-MS/MS). Due to the diverse nature of the analytes covered in this method each analyte requires its own analytical acquisition method thus the sample is run multiple times according to the analyte list requested.

Soil and solid samples are extracted with ACN and extracts are filtered then directly injected onto LC -MS/MS using selective ion monitoring.

FOOTNOTES .

IS Insufficient sample for analysis. LOR Limit of Reporting LNR Sample listed, but not received. Raised or Lowered Limit of Reporting ↑↓ NATA accreditation does not cover the QFH QC result is above the upper tolerance performance of this service QFL QC result is below the lower tolerance ++ Indicative data, theoretical holding time exceeded. The sample was not analysed for this analyte

NVI

Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Solid samples expressed on a dry weight basis.

Indicates that both * and ** apply.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

SAMPLE RECEIPT ADVICE

CLIENT DETAILS	S	LABORATORY DETA	LABORATORY DETAILS					
Contact Client Address	Chris Gunton LANTERRA CONSULTING PTY LTD PO BOX 3626	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St					
	WESTON ACT 2611		Alexandria NSW 2015					
Telephone	0432 324 348	Telephone	+61 2 8594 0400					
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499					
Email	Chris.Gunton@lanterra.com.au	Email	au.environmental.sydney@sgs.com					
Project	P21091 - Cusack PI Yass	Samples Received	Fri 10/9/2021					
Order Number	P21091	Report Due	Fri 17/9/2021					
Samples	21	SGS Reference	SE223496					

SUBMISSION DETAILS

This is to confirm that 21 samples were received on Friday 10/9/2021. Results are expected to be ready by COB Friday 17/9/2021. Please quote SGS reference SE223496 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 10/9/2021 Yes 10.0°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis

Yes Ice Bricks 21 Soil COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

17 soil samples have been placed on hold as no tests have been assigned for them by the client. These samples will not be processed. Phenoxy Acid Herbicides subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Number 2562/14420.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

t +61 2 8594 0400 Australia Australia f +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client LANTERRA CONSULTING PTY LTD

Project P21091 - Cusack PI Yass

_	SUMMARY OF ANALYSIS											
	No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Pesticides / Herbicides in Soils by LC-MS/MS	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil		
	010	LC10 0.0-0.1	-	-	-	-	19	-	-	-		
	011	LC11 0.0-0.1	-	-	-	-	19	-	-	-		
	012	LC12 0.0-0.1	-	-	-	-	19	-	-	-		
	013	LC13 0.0-0.1	-	-	-	-	19	-	-	-		
	016	LC16 0.0-0.1	-	-	-	-	19	-	-	-		
	019	Hole 0.0-0.1	29	14	26	11	-	10	11	7		
	021	SP2	29	14	26	11	-	10	11	7		

_ CONTINUED OVERLEAF

- CLIENT DETAILS -

Client LANTERRA CONSULTING PTY LTD

Project P21091 - Cusack PI Yass

SUMMAR	Y OF ANALYSIS					
No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	Total Recoverable Elements in Soil/Waste	Triazines in Soil
001	LC1 0.0-0.1	-	1	1	7	-
002	LC2 0.0-0.1	-	1	1	7	-
003	LC3 0.2-0.3	-	1	1	7	-
004	LC4 0.0-0.1	-	1	1	7	-
005	LC5 0.0-0.1	-	1	1	7	-
006	LC6 0.0-0.1	-	1	1	7	-
007	LC7 0.0-0.1	-	1	1	7	-
008	LC8 0.25-0.35	-	1	1	7	-
009	LC9 0.0-0.1	-	1	1	7	-
010	LC10 0.0-0.1	-	1	1	7	10
011	LC11 0.0-0.1	-	1	1	7	10
012	LC12 0.0-0.1	-	1	1	7	10
013	LC13 0.0-0.1	-	1	1	7	10
014	LC14 0.0-0.1	-	1	1	7	-
015	LC15 0.0-0.1	-	1	1	7	-
016	LC16 0.0-0.1	-	1	1	7	10
017	LC17 0.0-0.1	-	1	1	7	-
018	LC18 0.0-0.1	-	1	1	7	-
019	Hole 0.0-0.1	2	1	1	7	-
020	QC1	-	1	1	7	-
021	SP2	2	1	1	7	-
	1	1	1	1	1	1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

Borelogs

Appendix E

/	lanterra consulting					BORE LOG				ROJECT NUMBER: P21091 LIENT NAME: Catalyze Property Consulting DDRESS: 16-21 Cusack Place, Yass NSW		
PROJECT NAME: Catalyze DSI - Cusack Place CONTRACTOR: Lanterra Consulting DRILL METHOD: Hand auger DIAMETER: 100 mm HOLE DEPTH: 0.3							COORDINATE SYSTE EASTING: 676,070.0 NORTHING: 6,140,6 ELEVATION: 576.0 DATE DRILLED: 1/9,	M: MGA) mE 98.0 mN m AHD /2021	A/GDA 94			
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed	Gapino	nscs	(Depth) Lithological Description		Additional Observations	Elevation (AHD)	
0.0		LC1 0.0-0.1	0			SM	(0.0) Grav moist-wet.	elly sandy Silt: brown,	e brown,		576	

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

lanterra consulting					BORE LOG LC2				PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Consulting ADDRESS: 16-21 Cusack Place, Yass NSW			
PROJECT NAME: Catalyze DSI - Cusack Place CONTRACTOR: Lanterra Consulting DRILL METHOD: Hand auger DIAMETER: 100 mm HOLE DEPTH: 0.3							COORDINATE SYSTE EASTING: 67,079.0 NORTHING: 6,140,4 ELEVATION: 557.0 DATE DRILLED: 1/9,	M: MGA mE 83.0 mN m AHD /2021	VGDA 94			
Depth (m) Geological Unit	Sample Name	PID (ppm)	Analysed		nscs	(Depth) Lithological Description		Additional Observations	Elevation (AHD)		
0.0	LC2 0.0-0.1	0			SM	(0.0) Grav moist-wet.	y silty Clay: orange-pale	e brown,		-		

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

/	~	∧ lanterra	CON	sulting	BORE LOG LC3			PROJEC CLIENT ADDRE	PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Consulting ADDRESS: 16-21 Cusack Place, Yass NSW		
PI Ci Di Di Hi	ROJECT ONTRAC RILL ME IAMETER OLE DER	NAME: Cataly TOR: Lante THOD: Hand R: 100 n PTH: 0.3	yze DSI - C rra Consul auger nm	Cusack Place Iting			COORDINATE SYSTE EASTING: 675,886.0 NORTHING: 6,140,5 ELEVATION: 563.0 DATE DRILLED: 1/9	IM: MGA 0 mE 685.0 mN m AHD /2021	VGDA 94		
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed Graphic	- SSCS	(Depth) Lithological Description		Additional Observations	Elevation (AHD)	
0.0		LC3 0.0-0.1	0		SM	(0.0) Sand	l y Silt: brown, moist.	p. moint		-	
						(0.1) Clay	ey sandy Silt: grey-brown	n, moist.			
		LC3 0.2-0.3	0						Rock @ 0.3 m.		

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

/	~	∧ lanterra	CON	sulting	BORE LOG J LC4			PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Consulting ADDRESS: 16-21 Cusack Place, Yass NSW		
PF CC DI DI HC	ROJECT ONTRAC RILL ME AMETEF OLE DEF	NAME: Cataly TOR: Lante THOD: Hand R: 100 n PTH: 0.3	yze DSI - 0 rra Consu auger nm	Cusack Place Iting			COORDINATE SYSTE EASTING: 675,985.0 NORTHING: 6,140,2 ELEVATION: 551.0 DATE DRILLED: 1/9	M: MGA 0 mE 64.0 mN m AHD /2021	VGDA 94	
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed Granhic	- SSSU	(Depth) Lithological Description		Additional Observations	Elevation (AHD)
0.0		LC4 0.0-0.1	0		SM SM SM	(0.0) Sand	l y Silt: brown, moist-wet.			-
		LC4 0.2-0.3	0							

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

/	~	∧ lanterra		sulting	BORE LOG LC5			LOG 5	PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Consulting ADDRESS: 16-21 Cusack Place, Yass NSW			
PI Ci Di Di Hi	ROJECT ONTRAC RILL ME AMETER OLE DER	NAME: Cataly TOR: Lante THOD: Hand R: 100 n PTH: 0.2	yze DSI - C rra Consu auger ım	Cusack Place Iting				COORDINATE SYSTE EASTING: 675,881.0 NORTHING: 6,140,3 ELEVATION: 554.0 DATE DRILLED: 1/9/	M: MG <i>F</i>) mE 51.0 mN m AHD /2021	A/GDA 94		
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed			(Depth)	Lithological Description		Additional Observations	Elevation (AHD)	
0.0		LC5 0.0-0.1	0		SN	i (0.0 moi	0) Grave	Ily sandy Silt: brown,			-	
		LC5 0.1-0.2	0							Rock @ 0.2 m.		

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

/	~	∧ lanterra	CON	sulting	BORE LOG LC6			PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Consulting ADDRESS: 16-21 Cusack Place, Yass NSW		
P C D H	ROJECT ONTRAC RILL ME [®] IAMETER OLE DEP	NAME: Cataly TOR: Lante THOD: Hand R: 100 m PTH: 0.1	rze DSI - 0 rra Consu auger ım	Cusack Place			COORDINATE SYSTE EASTING: 675,720. NORTHING: 6,140,5 ELEVATION: 552.0 DATE DRILLED: 1/9	M: MG/ 0 mE 547.0 mN m AHD 1/2021	4/GDA 94	
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed	Cashing Cashin	(Depti	n) Lithological Description		Additional Observations	Elevation (AHD)
0.0		LC6 0.0-0.1	0			(0.0) Sand	ly Silt : brown, moist-dry.		Rock @ 0.1 m.	552

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

/	~	∧ lanterra	соп	sulting	BORE LOG LC7				PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Consulting ADDRESS: 16-21 Cusack Place, Yass NSW		
PI C D H	ROJECT ONTRAC RILL ME IAMETEF OLE DEF	NAME: Cataly TOR: Lante THOD: Hand R: 100 n PTH: 0.1	yze DSI - (rra Consu auger nm	Cusack Place Iting			COORDINATE SYSTE EASTING: 675,774.0 NORTHING: 6,140,6 ELEVATION: 555.0 DATE DRILLED: 1/9	M: MGA 0 mE 98.0 mN m AHD /2021	A/GDA 94		
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed	n sos	(Deptł	n) Lithological Description		Additional Observations	Elevation (AHD)	
0.0		LC7 0.0-0.1	0		SM	(0.0) Sanc	ly Silt: brown, moist-dry.		Rock @ 0.1 m.	555	

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

/	~	∧ lanterra	CON	sulting	BORE LOG LC8			E LOG C8	PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Consulting ADDRESS: 16-21 Cusack Place, Yass NSW		
PI Ci DI DI Hi	ROJECT ONTRAC RILL ME [®] IAMETER OLE DEP	NAME: Cataly TOR: Lante THOD: Hand t: 100 n TH: 0.35	yze DSI - (rra Consu auger ım	Cusack Place Iting				COORDINATE SYSTE EASTING: 675,708.0 NORTHING: 6,140,3 ELEVATION: 548.0 DATE DRILLED: 1/9,	M: MGA) mE 95.0 mN m AHD /2021	4/GDA 94	
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed	Giapilic	nscs	(Depth) Lithological Description		Additional Observations	Elevation (AHD)
0.0		LC8 0.0-0.1	0			SM	(0.0) Sand	y Silt: brown, moist-dry.	ted.		-

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

lanterra consulting						BORE LOG LC9			PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Consulting ADDRESS: 16-21 Cusack Place, Yass NSW			
PROJECT NAME: Catalyze DSI - Cusack Place CONTRACTOR: Lanterra Consulting DRILL METHOD: Hand auger DIAMETER: 100 mm HOLE DEPTH: 0.3							COORDINATE SYSTE EASTING: 675,530.0 NORTHING: 6,140,4 ELEVATION: 531.0 DATE DRILLED: 1/9	M: MGA 0 mE 149.0 mN 1 m AHD 1/2021	VGDA 94			
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed	RSCS	(Depth	n) Lithological Description		Additional Observations	Elevation (AHD)		
0.0		LC9 0.0-0.1	0		SM	(0.0) Sanc	ly Silt: brown, moist-wet.					
		LC9 0.2-0.3	0.3									

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

Ianterra consulting					BORE LOG LC10			E LOG :10	PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Consulting ADDRESS: 16-21 Cusack Place, Yass NSW			
PROJECT NAME: Catalyze DSI - Cusack Place CONTRACTOR: Lanterra Consulting DRILL METHOD: Hand auger DIAMETER: 100 mm HOLE DEPTH: 0.35								COORDINATE SYSTE EASTING: 675,415.0 NORTHING: 6,190,3 ELEVATION: 526.0 DATE DRILLED: 1/9/	M: MGA) mE 11.0 mN m AHD /2021	NGDA 94		
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed	Giapino	nscs	(Depth) Lithological Description		Additional Observations	Elevation (AHD)	
0.0		LC10 0.0-0.1	0			SM	(0.0) Sand	y Silt: brown, moist-wet.		Rock @ 0.35 m	-	

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

lanterra consulting						BORE LOG			ROJECT NUMBER: P21091 LIENT NAME: Catalyze Property Consulting DRESS: 16-21 Cusack Place, Yass NSW		
PROJECT NAME: Catalyze DSI - Cusack Place CONTRACTOR: Lanterra Consulting DRILL METHOD: Hand auger DIAMETER: 100 mm HOLE DEPTH: 0.4							COORDINATE SYSTE EASTING: 675,316.0 NORTHING: 6,140,4 ELEVATION: 527.0 DATE DRILLED: 1/9	IM: MGA 0 mE 133.0 mN m AHD /2021	VGDA 94		
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed	SSSN	(Depti	n) Lithological Description		Additional Observations	Elevation (AHD)	
0.0 -		LC11 0.0-0.1	0		SM	(0.0) Sand (0.3) Sand moist-wet.	iy Silt: brown, moist-wet.			-	
		LC11 0.3-0.4	0								

Comments	LOGGED BY	KL										
	CHECKED BY	Edit-Text										
/	~	∧ lanterra		sulting	BORE LOG LC12			E LOG :12	PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Consulting ADDRESS: 16-21 Cusack Place, Yass NSW			
----------------------------	---	---------------	-----------	----------	------------------	------	--	--	--	-------------------------	-----------------	--
PI C4 DI DI H4	PROJECT NAME: Catalyze DSI - Cusack Place CONTRACTOR: Lanterra Consulting DRILL METHOD: Hand auger DIAMETER: 100 mm HOLE DEPTH: 0.4							COORDINATE SYSTE EASTING: 675,373.0 NORTHING: 6,140,4 ELEVATION: 523.0 DATE DRILLED: 1/9	M: MGA 0 mE 76.0 mN m AHD /2021	VGDA 94		
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed	Graphic	NSCS	(Depth) Lithological Description		Additional Observations	Elevation (AHD)	
0.0 -		LC12 0.0-0.1	0.5			SM	(0.0) Sand (0.3) Sand moist-wet.	y Silt: brown, moist-wet.			-	
		LC12 0.3-0.4	1.1									

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

/	~	∧ lanterra		sulting	BORE LOG LC13			PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Consulting ADDRESS: 16-21 Cusack Place, Yass NSW			
PI C D H	ROJECT ONTRAC RILL ME IAMETEF OLE DEF	NAME: Cataly TOR: Lante THOD: Hand R: 100 m PTH: 0.5	yze DSI - 0 rra Consu auger nm	Cusack Place Iting			COORDINATE SYSTE EASTING: 675,212.0 NORTHING: 6,140,5 ELEVATION: 523.0 DATE DRILLED: 2/9	M: MGA D mE 82.0 mN m AHD /2021	VGDA 94		
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed Graphic	- SOSU	(Deptł	n) Lithological Description		Additional Observations	Elevation (AHD)	
0.0		LC13 0.0-0.1				(0.0) Clay	ey Silt: brown, moist-wet.			523	
05-		LC13 0.4-0.5				(0.4) Grav dry-moist,	relly silty Clay: brown, so fragments of volcanics.	oft-hard,	Fill?		

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

/	^/	∧ lanterra	CON	sulting	BORE LOG LC14			E LOG :14	PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Consulting ADDRESS: 16-21 Cusack Place, Yass NSW				
P C D H	ROJECT ONTRAC RILL ME [®] IAMETEF OLE DEF	NAME: Cataly TOR: Lante THOD: Hand R: 100 n PTH: 0.4	yze DSI - C rra Consul auger ım	Cusack Place Iting				COORDINATE SYSTEM: MGA/GDA 94 EASTING: 675,211.0 mE NORTHING: 6,140,536.0 mN ELEVATION: 523.0 m AHD DATE DRILLED: 2/9/2021					
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed	Graphic	nscs	(Depth) Lithological Description		Additional Observations	Elevation (AHD)		
0.0		LC14 0.0-0.1				CL	(0.0) Grav moist, frag	elly clayey Silt: brown, hements of volcanics.	hard,	Fill?	-		

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

/	~	∧ lanterra	CON	sulting	BORE LOG LC15			E LOG :15	PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Consulting ADDRESS: 16-21 Cusack Place, Yass NSW		
P C D H	ROJECT ONTRAC RILL ME [®] IAMETER OLE DER	NAME: Cataly TOR: Lante THOD: Hand t: 100 n TH: 0.4	γze DSI - 0 rra Consu auger ım	Cusack Place				COORDINATE SYSTEM: MGA/GDA 94 EASTING: 675,206.0 mE NORTHING: 6,140,464.0 mN ELEVATION: 523.0 m AHD DATE DRILLED: 2/9/2021			
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed	Graphic	nscs	(Depth) Lithological Description		Additional Observations	Elevation (AHD)
0.0 -		LC15 0.0-0.1				CL	(0.0) Silty (0.3) Clay plastic.	Clay: brown, moist, soft,	et, soft,		-

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

/	~	∧ lanterra		sulting	BORE LOG LC16			PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Consulting ADDRESS: 16-21 Cusack Place, Yass NSW		
P C D H	ROJECT ONTRAC RILL ME [®] IAMETEF OLE DEF	NAME: Cataly TOR: Lante THOD: Hand R: 100 m PTH: 0.5	yze DSI - C rra Consul auger ım	Cusack Place Iting			COORDINATE SYSTE EASTING: 675,210.0 NORTHING: 6,140,4 ELEVATION: 523.0 DATE DRILLED: 2/9,	M: MGA) mE 08.0 mN m AHD /2021	VGDA 94	
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed Graphic	SUSU	(Depth) Lithological Description		Additional Observations	Elevation (AHD)
0.0 -		LC16 0.0-0.1				(0.0) Silty (0.4) Silty soft, plastic	Clay: brown, moist, soft, Clay: brown-orange, mois c, trace of volcanics.	st-wet,	natural.	-
05-										

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

/	~	∧ lanterra	соп	sulting		BORI	E LOG 217	PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Consulting ADDRESS: 16-21 Cusack Place, Yass NSW		
PI C D H	ROJECT ONTRAC RILL ME IAMETER OLE DER	NAME: Cataly TOR: Lante THOD: Hand R: 100 m PTH: 0.2	rze DSI - C rra Consul auger nm	Cusack Place			COORDINATE SYSTE EASTING: 675,211.0 NORTHING: 6,140,3 ELEVATION: 523.0 DATE DRILLED: 2/9	M: MG <i>A</i> 0 mE 32.0 mN m AHD /2021		
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed	nscs N	(Depth) Lithological Description		Additional Observations	Elevation (AHD)
0.0 -		LC17 0.0-0.1				(0.0) Clay	ey Silt: brown, dry-moist,	soft.	Refusal @ 0.2 m - tree root.	-

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

lanterra consulting						BORE LOG PROJECT NUMBER: P21091 CLIENT NAME: Catalyze Property Hole ADDRESS: 16-21 Cusack Place, Ya		CT NUMBER: P21091 I NAME: Catalyze Property Consu ISS: 16-21 Cusack Place, Yass NS	lting N		
PROJECT NAME: Catalyze DSI - Cusack Place CONTRACTOR: Lanterra Consulting DRILL METHOD: Hand auger DIAMETER: 100 mm HOLE DEPTH: 0.1						COORDINATE SYSTE EASTING: 675,600.0 NORTHING: 6,140,2 ELEVATION: 536.0 DATE DRILLED: 1/9	M: MG,) mE 90.0 mN m AHD /2021	A/GDA 94			
Depth (m)	Geological Unit	Sample Name	PID (ppm)	Analysed	Graphic	nscs	(Depth) Lithological Description		Additional Observations	Elevation (AHD)
0.0		Hole 0.0-0.1	0			SM	(0.0) Sand	y Silt: brown, moist-wet,	soft.	Rabbit warren under tin sheets and wood.	536

Comments	LOGGED BY	KL
	CHECKED BY	Edit-Text

EIL Calculations

Appendix F

Inputs		
Select contaminant from list below		
As		
Below needed to calculate fresh and aged		
ACLs		
Below needed to calculate fresh and aged		
ABCs		
or for fresh ABCs only		
or for aged ABCs only		

Outputs				
Land use	Arsenic generic EILs			
	(mg contaminant	t/kg dry soil)		
	Fresh	Aged		
National parks and areas of high conservation value	20	40		
Urban residential and open public spaces	50	100		
Commercial and industrial	80	160		

Inputs			
Select contaminant from list below			
DDT			
Below needed to calculate fresh and aged			
ACLs			
Palow peeded to coloulate freeh and aread			
ABCs			
or for fresh ABCs only			
or for aged ABCs only			

Outputs				
Land use DDT generic EILs				
	(mg contaminant	t/kg dry soil)		
	Fresh	Aged		
National parks and areas of high conservation value	3	3		
Urban residential and open public spaces	180	180		
Commercial and industrial	640	640		

Inputs
Select contaminant from list below
Cr III
Below needed to calculate fresh and aged ACLs
Enter % clay (values from 0 to 100%)
10
Below needed to calculate fresh and aged
ABCs
ABCs
ABCs Measured background concentration
ABCs Measured background concentration (mg/kg). Leave blank if no measured value
ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only
ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method)
ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration
ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7
ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only
ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only Enter State (or closest State)
ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only Enter State (or closest State) NSW

Outputs				
Land use	Cr III soil-specific EILs			
	(mg contaminant	/kg dry soil)		
	Fresh	Aged		
National parks and areas of high conservation value	130	140		
Urban residential and open public spaces	230	410		
Commercial and industrial	340	670		

Outputs				
Land use	Cu soil-specific EILs			
	(mg contaminant	/kg dry soil)		
	Fresh	Aged		
National parks and areas of high conservation value	45	50		
Urban residential and open public spaces	75	120		
Commercial and industrial	100	170		

|--|

Select contaminant from list below Ni

Below needed to calculate fresh and aged ACLs

Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)

5.5

Below needed to calculate fresh and aged ABCs

Measured background concentration (mg/kg). Leave blank if no measured value

or for fresh ABCs only

Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7

or for aged ABCs only

Enter State (or closest State)

NSW

Enter traffic volume (high or low)

Outputs				
Land use Ni soil-specific EILs				
	(mg contaminant	/kg dry soil)		
	Fresh	Aged		
National parks and areas of high conservation value	30	10		
Urban residential and open public spaces	40	45		
Commercial and industrial	50	75		

Inputs Select contaminant from list below Zn

Below needed to calculate fresh and aged ACLs

Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)

5.5

Enter soil pH (calcium chloride method) (values from 1 to 14)

5.5

Below needed to calculate fresh and aged ABCs

Measured background concentration (mg/kg). Leave blank if no measured value

or for fresh ABCs only

Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7

or for aged ABCs only

Enter State (or closest State)

NSW

Enter traffic volume (high or low)

Outputs				
Land use	Zn soil-specific EILs			
	(mg contaminant/kg dry soil)			
	Fresh	Aged		
National parks and areas of high conservation value	50	120		
Urban residential and open public spaces	110	270		
Commercial and industrial	150	380		

Inputs
Select contaminant from list below
Naphthalene
Below needed to calculate fresh and aged
ACLs
Below needed to calculate fresh and aged
ABCs
or for fresh ABCs only
or for aged ABCs only
,

Outputs					
Land use	Naphthalene generic EILs				
	(mg contaminant/kg dry soil)				
	Fresh	Aged			
National parks and areas of high conservation value	10	10			
Urban residential and open public spaces	170	170			
Commercial and industrial	370	370			

Inputs
Select contaminant from list below
Pb
Below needed to calculate fresh and aged
ACLs
Below needed to calculate fresh and arred
ABCs
or for fresh ABCs only
or for aged ABCs only

Outputs					
Land use	Lead generic EILs (mg contaminant/kg dry soil)				
	Fresh	Aged			
National parks and areas of high conservation value	110	470			
Urban residential and open public spaces	270	1100			
Commercial and industrial	440	1800			

	nterra consu	Iting	SITE PH	OTOGRAPHS	
Client Name Catalyze	Site Locat i Cusack Pla	ion lice			Project No. P21091
Photo No.	Date	line and		and the	
1.	1/09/2021			and the second	A.
Desc Paddo	ription ock ares				
Photo No. 2.	Date 1/09/2021			Service States	
Desc Paddo	ription ock ares				

	nterra consu	Iting		SI	re photo	GRAPHS	
ent Name talyze	Site Locat Cusack Pla	ion Ice					Project No P21091
Photo No.	Date						
3.	1/09/2021	-		100-000-0044			04.3
Desc	ription	Contraction of		and the second			-
Paddo	ock ares				ine the second		
		A STATE					
					L opposite		
			no teres				品。原料
			A A			No. 1917	ANG PARTY
					P	12 Aug	
					A		
Photo No.	Date						
4.	1/09/2021						
Desc	rintion	1 Particul				000	-
Paddo	ock ares	and the second	abu at usi at a				State of Constants of States
					the contraction of the		the section
		1. 书文	Billion	and the second second			
						a de la	
		de la co	10		H Harby		
				$\mathcal{A}^{(1)}$	the part of the		
		Read a	12 A.S. 1				
		(A DE				A DECK	

	anterra cons	ulting	SITE PHOTOGRAPHS	
Client Name Catalyze	Site Loca Cusack Pl	tion ace		Project No. P21091
		1		
Photo No.	Date			en alle des
5.	20/01/2021	- Aller		
Des	cription			and the second sec
Example of where ex present a	paddock area posed rock is t the surface			
Photo No.	Date			
6.	20/01/2021	A. S		7
Des	cription			Personal dia
View of hol met	e covered with al sheet			

	nterra consi	ulting	SI	TE PHOTOGRAPHS	
Client Name Catalyze	Site Loca Cusack Pl	tion ace			Project No. P21091
Photo No.	Date				
7.	20/01/2021				
Desc Stockpile concrete and in the northw the	ription of soil with asphalt located vest corner of site.				
Photo No.	Date				
Desc	ription				